Bài 39 trang 209 SGK giải tích 12 nâng cao

2024-09-14 19:40:46

Giải các phương trình sau trên C:

LG a

\(\eqalign{{\left( {z + 3 - i} \right)^2} - 6\left( {z + 3 - i} \right) + 13 = 0}\)

Phương pháp giải:

- Đặt ẩn phụ \({\rm{w}} = z + 3 - i\).

- Giải phương trình mới tìm w, từ đó suy ra z.

Lời giải chi tiết:

Đặt \({\rm{w}} = z + 3 - i\) ta được phương trình:

\(\eqalign{  & {{\rm{w}}^2} - 6{\rm{w}}+ 13 = 0 \cr &\Leftrightarrow {\left( {{\rm{w}} - 3} \right)^2} =  - 4 = 4{i^2}  \cr  &  \Leftrightarrow \left[ \matrix{  {\rm{w}} = 3 + 2i \hfill \cr  {\rm{w}} = 3 - 2i \hfill \cr}  \right. \cr &\Leftrightarrow \left[ \matrix{  z + 3 - i = 3 + 2i \hfill \cr  z + 3 - i = 3 - 2i \hfill \cr}  \right. \cr &\Leftrightarrow \left[ \matrix{  z = 3i \hfill \cr  z =  - i \hfill \cr}  \right. \cr} \)

Vậy \(S = \left\{ { - i;3i} \right\}\)


LG b

\(\eqalign{\left( {{{iz + 3} \over {z - 2i}}} \right)^2 - 3{{iz + 3} \over {z - 2i}} - 4 = 0;} \)

Phương pháp giải:

- Đặt ẩn phụ \({\rm{w}} = {{iz + 3} \over {z - 2i}}\)

- Giải phương trình mới tìm w, từ đó suy ra z.

Lời giải chi tiết:

Đặt \({\rm{w}} = {{iz + 3} \over {z - 2i}}\) ta được phương trình: \({{\rm{w}}^2} - 3{\rm{w}} - 4 = 0 \Leftrightarrow \left[ \matrix{  {\rm{w}} =  - 1 \hfill \cr {\rm{w}} = 4 \hfill \cr}  \right.\)

Với \({\rm{w}} = -1\) ta có \({{iz + 3} \over {z - 2i}} =  - 1 \Leftrightarrow iz + 3 =  - z + 2i\)

\( \Leftrightarrow \left( {i + 1} \right)z =  - 3 + 2i \) \(\Leftrightarrow z = {{ - 3 + 2i} \over {1 + i}} = {{\left( { - 3 + 2i} \right)\left( {1 - i} \right)} \over 2} = {{ - 1 + 5i} \over 2}\)

Với \({\rm{w}} = 4\) ta có \({{iz + 3} \over {z - 2i}} = 4\) \( \Leftrightarrow iz + 3 = 4z - 8i\) \( \Leftrightarrow \left( {4 - i} \right)z = 3 + 8i\)

\( \Leftrightarrow z = {{3 + 8i} \over {4 - i}} = {{\left( {3 + 8i} \right)\left( {4 + i} \right)} \over {17}} = {{4 + 35i} \over {17}}\)

Vậy \(S = \left\{ {{{ - 1 + 5i} \over 2};{{4 + 35i} \over {17}}} \right\}\)


LG c

\({\left( {{z^2} + 1} \right)^2} + {\left( {z + 3} \right)^2} = 0.\)

Phương pháp giải:

Biến đổi phương trình về dạng tích.

Lời giải chi tiết:

\({\left( {{z^2} + 1} \right)^2} + {\left( {z + 3} \right)^2} =0\) \(\Leftrightarrow {\left( {{z^2} + 1} \right)^2} - {\left[ {i\left( {z + 3} \right)} \right]^2}=0\)

\( \Leftrightarrow  \left( {{z^2} + 1 + i\left( {z + 3} \right)} \right)\left( {{z^2} + 1 - i\left( {z + 3} \right)} \right) = 0\)

\(\Leftrightarrow\left[ \matrix{  {z^2} + 1 + i\left( {z + 3} \right) = 0\,\,\left( 1 \right) \hfill \cr  {z^2} + 1 - i\left( {z + 3} \right) = 0\,\,\,\left( 2 \right) \hfill \cr}  \right.\)

\(\left( 1 \right) \Leftrightarrow {z^2} + iz + 1 + 3i = 0\);

\(\Delta   = {i^2} - 4\left( {1 + 3i} \right) =  - 5 - 12i \) \(= {\left( {2 - 3i} \right)^2}\) 

Phương trình có hai nghiệm là 

\(\left\{ \begin{array}{l}
{z_1} = \frac{{i + 2 + 3i}}{2} = 1 + 2i\\
{z_2} = \frac{{i - 2 - 3i}}{2} = - 1 - i
\end{array} \right.\)

\(\left( 2 \right) \Leftrightarrow  {z^2} - iz + 1 - 3i = 0\);

\(\Delta  =  - 5 + 12i = {\left( {2 + 3i} \right)^2}\) 

Phương trình có hai nghiệm là \({z_3} = 1 + 2i\) và \({z_4} =  - 1 - i\)

Vậy \(S = \left\{ {1 - 2i; - 1 + i;1 + 2i; - 1 - i} \right\}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"