Câu 22 trang 214 SGK Giải tích 12 Nâng cao

2024-09-14 19:40:52

Giải các phương trình sau trên C

LG a

z2 – 3z + 3 + i = 0

Lời giải chi tiết:

z2 – 3z + 3 + i = 0 có biệt thức là:

Δ = 32 – 4(3 + i) = -3 – 4i = (-1 + 2i )2

Nên nghiệm của nó là: 

\(\left\{ \matrix{
z_1={{3 + ( - 1 + 2i)} \over 2} = 1 + i \hfill \cr 
z_2={{3 - ( - 1 + 2i)} \over 2} = 2 - i \hfill \cr} \right.\)


LG b

\({z^2} - (cos\varphi  + i\sin \varphi )z + i\sin \varphi \cos \varphi  = 0\)

trong đó \(\varphi\) là số thực cho trước

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {z^2} - (cos\varphi + i\sin \varphi )z + i\sin \varphi \cos \varphi = 0 \cr 
& \Leftrightarrow {z^2} - \cos \varphi .z - i\sin \varphi .z + isin\varphi cos\varphi = 0 \cr 
& \Leftrightarrow z(z - cos\varphi ) - isin\varphi (z - cos\varphi ) = 0 \cr 
& \Leftrightarrow (z - cos\varphi )(z - isin\varphi ) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
z = \cos \varphi \hfill \cr 
z = i\sin \varphi \hfill \cr} \right. \cr} \)

Vậy \(S = {\rm{\{ cos}}\varphi {\rm{;}}\,i\sin \varphi )\).

Cách khác:

Ta có biệt số

∆=(cosφ+i sinφ )2-4i sinφ.cosφ

=cos2 φ+2i.cosφ.sinφ- sin2φ-4isinφ.cosφ

= cos(2φ)-i sin(2φ)

=cos(-2φ)+i sin(-2φ)

∆ có hai căn bậc hai là: cos(-φ)+i sin(-φ) và (-cos(-φ)-i sin(-φ)

Nên phương trình có nghiệm là:

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"