Câu 8 trang 212 SGK Giải tích 12 Nâng cao

2024-09-14 19:40:57

LG a

Tính đạo hàm của hàm số y = cosx.e2tanx và y = log2(sinx)

Phương pháp giải:

Sử dụng các công thức tính đạo hàm:

\(\begin{array}{l}
\left( {{e^u}} \right)' = u'{e^u}\\
\left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}
\end{array}\)

Kết hợp với các công thức tính đạo hàm của tổng, hiệu, tích, thương các hàm số.

Lời giải chi tiết:

 Ta có:

\(\eqalign{
& y' = (\cos x.{e^{2\tan x}})' \cr &  = \left( {\cos x} \right)'{e^{2\tan x}} + \cos x\left( {{e^{2\tan x}}} \right)'\cr &= - \sin x{.e^{2\tan x}} + \cos x.{2 \over {{{\cos }^2}x}}.{e^{2\tan x}} \cr 
& = {e^{2\tan x}}({2 \over {\cos x}} - \sin x) \cr 
& y' = ({\log _2}(\sin x))'  = \frac{{\left( {\sin x} \right)'}}{{\sin x\ln 2}}\cr &= {{{\mathop{\rm cosx}\nolimits} } \over {\sin x}}.{1 \over {\ln 2}} = {{\cot x} \over {\ln 2}} \cr} \)


LG b

Chứng minh rằng hàm số y = e4x + 2e-x thỏa mãn hệ thức y’’' – 13y’ – 12y = 0

Phương pháp giải:

Tính y', y'', y''' thay vào đẳng thức cần chứng minh.

Lời giải chi tiết:

Ta có:

y’ = (e4x + 2e-x)' = 4.e4x – 2e-x

y’’ = (4.e4x – 2e-x)'=16.e4x + 2e-x

y’’’  = (16.e4x + 2e-x)' =64.e4x – 2e-x

Suy ra: y’’’ – 13y’ – 12y

= 64e4x – 2e-x – 13(4e4x - 2e-x ) – 12(e4x + 2e-x )

= 64e4x – 2e-x – 42e4x +26e-x – 12e4x - 24e-x

= 0 

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"