Câu 6 trang 212 SGK Giải tích 12 Nâng cao

2024-09-14 19:40:58

LG a

Cho \(P(x) = {{{4^x}} \over {{4^x} + 2}}\) và hai số a, b thỏa mãn a + b = 1

Hãy tính P(a) + P(b)

Phương pháp giải:

Thay a, b vào biểu thức và tính P(a)+P(b).

Chú ý biến đổi làm xuất hiện a+b.

Lời giải chi tiết:

 Ta có:

\(\eqalign{
& P(a) + P(b) = {{{4^a}} \over {{4^a} + 2}} + {{{4^b}} \over {{4^b} + 2}} \cr 
& = {{{4^a}({4^b} + 2) + {4^b}({4^a} + 2)} \over {({4^a} + 2)({4^b} + 2)}}\cr & = {{{{2.4}^{a + b}} + 2({4^a} + {4^b})} \over {{4^{a + b}} + 4 + 2({4^a} + {4^b})}} \cr 
& = {{8 + 2({4^a} + {4^b})} \over {8 + 2({4^a} + {4^b})}} = 1 \cr} \)


LG b

Hãy so sánh \(A = \root 3 \of {18} \) và \(B = {({1 \over 6})^{\log _62 - {1 \over 2}\log _{\sqrt 6 }5}}\)

Phương pháp giải:

Rút gọn B, sử dụng công thức \({a^{{{\log }_a}n}} = n\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& B = {({1 \over 6})^{\log _62 - {1 \over 2}\log _{\sqrt 6 }5}}\cr & = {\left( {\frac{1}{6}} \right)^{{{\log }_6}2 - {{\log }_6}5}} ={6^{-\log _62 + \log _{ 6 }5}}\cr &= {6^{{{\log }_6}{5 \over 2}}} = {5 \over 2} \cr 
& {A^3} = 18 > {({5 \over 2})^3}=B^3 \cr} \)

Suy ra A > B    

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"