Câu 2 trang 211 SGK Giải tích 12 Nâng cao

2024-09-14 19:41:00

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số f(x) = 2x3 – 3x2 – 12x – 10

Phương pháp giải:

- Tìm TXĐ.

- Tính đạo hàm, lập bảng biến thiên.

- Vẽ đồ thị.

Lời giải chi tiết:

TXD: \(D =\mathbb R\)

f ’(x) = 6(x2 – x – 2)

\(f'(x) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr 
x = 2 \hfill \cr} \right.\)

Hàm số đạt cực đại tại \(x=1;\;y_{CĐ}=-3\)

Hàm số đạt cực tiểu tại \(x=2;\;y_{CĐ}=-30\)

\(\mathop {\lim }\limits_{x \to  \pm \infty } f(x) =  \pm \infty \)

Ta có bảng biến thiên:

             

Đồ thị


LG b

Chứng minh rằng phương trình 2x3 – 3x2 – 12x – 10 = 0 có nghiệm thực duy nhất.

Phương pháp giải:

Sử dụng tương giao đồ thị, số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số với trục hoành.

Lời giải chi tiết:

Đồ thị hàm số y = 2x3 – 3x2 – 12x – 10  cắt trục hoành tại một điểm duy nhất nên phương trình đã cho có nghiệm thực duy nhất.


LG c

Gọi nghiệm thực duy nhất của hàm số là \(α\). Chứng ming rằnh \(3,5 < α < 3,6\).

Phương pháp giải:

Sử dụng định lí: Hàm số f(x) liên tục trên (a;b) và f(a).f(b)<0 thì tồn tại ít nhất một điểm c trong (a;b) sao cho f(c)=0.

Lời giải chi tiết:

Ta có: \(f(3, 5).f(3, 6) < 0\) và hàm số liên tục trên (3,5;3,6).

Vì vậy, phương trình có nghiệm \(α\)  duy nhất thỏa mãn điều kiện \(3,5 < α < 3,6\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"