Đề bài
Chứng ming rằng hình tròn xoay có vô số mặt phẳng đối xứng.
Lời giải chi tiết
Xét mặt tròn xoay (H) có trục là \(\Delta \). Mọi mặt phẳng \((P)\) đi qua \(\Delta \) đều là mặt phẳng đối xứng của (H). Thật vậy, nếu \(M \in \left( H \right)\) và \(M’\) là điểm đối xứng với \(M\) qua mp \((P)\) thì \(M’\) cũng nằm trên đường tròn \(\left( {{C_M}} \right)\) nên \(M' \in \left( H \right)\).
[hoctot.me - Trợ lý học tập AI]