Bài 6 trang 63 Hình học 12 Nâng cao

2024-09-14 19:41:43

Đề bài

Một hình thang cân \(ABCD\) có các cạnh đáy \(AB = 2a, BD = 4a\), cạnh bên \(AD = BC = 3a\). Hãy tính thể tích và diện tích toàn phần của khối tròn xoay sinh bởi hình thang đó khi quay quanh trục đối xứng của nó.

Lời giải chi tiết

Gọi \(S\) là giao điểm của hai cạnh bên \(AD\) và \(BC\) của hình thang.

Đường cao \(SO\) của tam giác cân \(SCD\) là trục đối xứng của hình thang, do đó \(SO\) cắt \(AB\) tại trung điểm \(O’\) của \(AB\).

Khi quay quanh \(SO\), tam giác \(SCD\) sinh ra khối nón \(\left( {{N_1}} \right)\) có thể tích \({V_1}\), tam giác \(SAB\) sinh ra khối nón \(\left( {{N_2}} \right)\) có thể tích \({V_2}\), còn hình thang \(ABCD\) sinh ra một khối tròn xoay \(\left( H \right)\) có thể tích \(V = {V_1} - {V_2}\).

Vì \(AB = {1 \over 2}CD\) nên \(AB\) là đường trung bình của tam giác \(SCD\) nên \(SB = BC = 3a\).

Ta có \(SO' = \sqrt {S{B^2} - O'{B^2}} \) \( = \sqrt {9{a^2} - {a^2}}  = 2\sqrt 2 a\)

\(\eqalign{
& SO = 2SO' = 4\sqrt 2 a \cr 
& V = {V_1} - {V_2}\cr& = {1 \over 3}\pi O{C^2}.SO - {1 \over 3}\pi O'{B^2}.SO' \cr&= {1 \over 3}\pi 4{a^2}.SO - {1 \over 3}\pi {a^2}SO' \cr 
& = {1 \over 3}\pi {a^2}\left( {4SO - SO'} \right) \cr&= {1 \over 3}\pi {a^2}\left( {16\sqrt 2 a - 2\sqrt 2 a} \right) \cr&= {{14\sqrt 2 } \over 3}\pi {a^3} \cr} \)

Diện tích xung quanh của khối tròn xoay \((H)\) là:

\(\eqalign{
& {S_{xq}} = {S_1} - {S_2} \cr&= \pi OC.SC - \pi O'B.SB \cr& = \pi .2a.6a - \pi .a.3a= 9\pi {a^2} \cr 
& {S_{tp}} = {S_{xq}} + {S_d} \cr& = 9\pi {a^2} + \pi {a^2} + 4\pi {a^2} = 14\pi {a^2} \cr} \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"