Cho hình chóp S.ABC có đường cao SA = h, đáy là tam giác ABC vuông tại C, AC = b, BC = a. Gọi M là trung điểm của AC và N là điểm sao cho \(\overrightarrow {SN} = {1 \over 3}\overrightarrow {SB} \).
LG a
Tính độ dài đoạn thẳng MN.
Phương pháp giải:
Chọn hệ trục Oxyz sao cho A trùng O, tia AC trùng tia Ox, AS trùng Oz.
Tìm tọa độ các điểm và tính toán.
Lời giải chi tiết:
Chọn hệ trục Oxyz như hình vẽ, B nằm trong góc xOy.
Ta có: \(A = \left( {0;0;0} \right),C = \left( {b;0;0} \right),\) \(B = \left( {b;a;0} \right),S = \left( {0;0;h} \right)\) .
\(M\left( {{b \over 2};0;0} \right),\overrightarrow {SB} = \left( {b;a; - h} \right)\)
Gọi \(N\left( {x;y;z} \right)\) thì \(\overrightarrow {SN} = \left( {x;y;z - h} \right)\).
\(\overrightarrow {SN} = {1 \over 3}\overrightarrow {SB} \Leftrightarrow \left\{ \matrix{
x = {b \over 3} \hfill \cr
y = {a \over 3} \hfill \cr
z - h = {{ - h} \over 3} \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
x = {b \over 3} \hfill \cr
y = {a \over 3} \hfill \cr
z = {{2h} \over 3} \hfill \cr} \right. \) \(\Rightarrow N\left( {{b \over 3};{a \over 3};{{2h} \over 3}} \right)\)
\(\eqalign{
& \overrightarrow {MN} = \left( {{b \over 3} - {b \over 2};{a \over 3};{{2h} \over 3}} \right) \cr &= \left( { - {b \over 6};{a \over 3};{{2h} \over 3}} \right) \cr
& MN = \sqrt {{{{b^2}} \over {36}} + {{{a^2}} \over 9} + {{4{h^2}} \over 9}} \cr &= {1 \over 6}\sqrt {{b^2} + 4{a^2} + 16{h^2}} \cr} \)
LG b
Tìm sự liên hệ giữa a, b, h để MN vuông góc với SB.
Phương pháp giải:
\(MN \bot SB \Leftrightarrow \overrightarrow {MN} .\overrightarrow {SB} = 0\)
Lời giải chi tiết:
\(MN \bot SB \Leftrightarrow \overrightarrow {MN} .\overrightarrow {SB} = 0\) \(\Leftrightarrow - {{{b^2}} \over 6} + {{{a^2}} \over 3} + {{ - 2{h^2}} \over 3} = 0 \) \(\Leftrightarrow 4{h^2} = 2{a^2} - {b^2}\)
[hoctot.me - Trợ lý học tập AI]