Bài 8 trang 81 SGK Hình học 12 Nâng cao

2024-09-14 19:41:58

LG a

Tìm toạ độ điểm M thuộc trục Ox sao cho M cách đều hai điểm A(1 ; 2 ; 3) và B(-3 ; -3 ; 2).

Giải chi tiết:

Giả sử \(M\left( {x;0;0} \right)\) thuộc trục Ox và MA = MB.
Ta có:

\(\eqalign{
& \,\,\,\,\,\,\,M{A^2} = M{B^2} \cr 
& \Leftrightarrow {\left( {1 - x} \right)^2} + {2^2} + {3^2} = {\left( { - 3 - x} \right)^2} + {\left( { - 3} \right)^2} + {2^2} \cr 
& \Leftrightarrow 1 - 2x + {x^2} + 13 = 9 + 6x + {x^2} + 13 \Leftrightarrow x = - 1 \cr 
& \Rightarrow M\left( { - 1;0;0} \right) \cr} \)


LG b

Cho ba điểm \(A\left( {2;0;4} \right)\,;\,\,B\left( {4;\sqrt 3 ;5} \right)\) và \(C\left( {\sin 5t,cos3t,sin3t} \right)\). Tìm t để AB vuông góc với OC (O là gốc toạ độ).

Giải chi tiết:

Ta có:

\(\eqalign{
& \overrightarrow {AB} = \left( {2;\sqrt 3 ;1} \right)\,;\,\overrightarrow {OC} = \left( {\sin 5t;\cos 3t;\sin 3t} \right) \cr 
& AB \bot OC \Leftrightarrow \overrightarrow {AB} .\overrightarrow {OC} = 0 \cr 
& \Leftrightarrow 2\sin 5t + \sqrt 3 \cos 3t + \sin 3t = 0 \cr 
& \Leftrightarrow \sin 5t + {{\sqrt 3 } \over 2}\cos 3t + {1 \over 2}\sin 3t = 0 \cr 
& \Leftrightarrow \sin 5t = - \sin \left( {3t + {\pi \over 3}} \right) \cr 
& \Leftrightarrow \sin 5t = \sin \left( { - 3t - {\pi \over 3}} \right) \cr 
& \Leftrightarrow \left[ \matrix{
5t = - 3t - {\pi \over 3} + k2\pi \hfill \cr 
5t = \pi + 3t + {\pi \over 3} + k2\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
t = - {\pi \over {24}} + {{k\pi } \over 4} \hfill \cr 
t = {{2\pi } \over 3} + k\pi \hfill \cr} \right.\,\left( {k \in\mathbb Z} \right) \cr} \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"