Bài 4 trang 81 SGK Hình học 12 Nâng cao

2024-09-14 19:41:59

Đề bài

Biết \(\left| {\overrightarrow u } \right| = 2\,;\,\left| {\overrightarrow v } \right| = 5\), góc giữa vectơ \(\overrightarrow u \) và \(\overrightarrow v \) bằng \({{2\pi } \over 3}\). Tìm k để vectơ \(\overrightarrow p  = k\overrightarrow u  + 17\overrightarrow v \) vuông góc với vectơ \(\overrightarrow q  = 3\overrightarrow u  - \overrightarrow v \).

Phương pháp giải - Xem chi tiết

Sử dụng \(\overrightarrow p  \bot \overrightarrow p  \Leftrightarrow \overrightarrow p .\overrightarrow q  = 0\) và \(\overrightarrow u .\overrightarrow v  = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\overrightarrow v } \right)\)

Lời giải chi tiết

Ta có 

\(\eqalign{
& \cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \cos {{2\pi } \over 3} = - {1 \over 2}\cr &\Rightarrow \overrightarrow u .\overrightarrow v  = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\overrightarrow v } \right) \cr &= 2.5.\left( { - \frac{1}{2}} \right) =  - 5\cr &\overrightarrow p \bot \overrightarrow q  \Leftrightarrow \overrightarrow p .\overrightarrow q = 0\cr & \Leftrightarrow \left( {k\overrightarrow u + 17\overrightarrow v } \right)\left( {3\overrightarrow u - \overrightarrow v } \right) = 0 \cr 
& \Leftrightarrow 3k{\left| {\overrightarrow u } \right|^2} - 17{\left| {\overrightarrow v } \right|^2} + \left( {51 - k} \right)\overrightarrow u .\overrightarrow v = 0 \cr 
& \Leftrightarrow 3k.4 - 17.25 + \left( {51 - k} \right).(-5) = 0 \cr 
& \Leftrightarrow 17k - 680 = 0 \cr 
& \Leftrightarrow k = 40 \cr} \)

Vậy với k = 40 thì \(\overrightarrow p  \bot \overrightarrow q \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"