Bài 3 trang 81 SGK Hình học 12 Nâng cao

2024-09-14 19:41:59

Tìm góc giữa hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) trong mỗi trường hợp sau:

LG a

\(\overrightarrow u  = \left( {1\,;\,1\,;\,1} \right),\overrightarrow v  = \left( {2\,;\,1\,;\, - 1} \right)\).

Phương pháp giải:

Sử dụng công thức tính cô sin góc giữa hai véc tơ \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}}\)

Lời giải chi tiết:

\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = {{\overrightarrow u .\overrightarrow v } \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow i } \right|}}\) \( = \frac{{1.2 + 1.1 + 1.\left( { - 1} \right)}}{{\sqrt {1 + 1 + 1} .\sqrt {4 + 1 + 1} }}\) \( = {2 \over {\sqrt 3 .\sqrt 6 }} = {{\sqrt 2 } \over 3}\)


LG b

\(\overrightarrow u  = 3\overrightarrow i  + 4\overrightarrow j \,\,;\,\,\overrightarrow v  =  - 2\overrightarrow j  + 3\overrightarrow k \).

Lời giải chi tiết:

Ta có: \(\overrightarrow u  = \left( {3;4;0} \right)\,;\,\overrightarrow v  = \left( {0; - 2;3} \right) \)

\(\Rightarrow \cos \left( {\overrightarrow u ,\overrightarrow v } \right) = {{\overrightarrow u .\overrightarrow v } \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}\) \( = \frac{{3.0 + 4.\left( { - 2} \right) + 0.\left( { - 3} \right)}}{{\sqrt {9 + 16 + 0} .\sqrt {0 + 4 + 9} }} \) \(= \frac{{ - 8}}{{5\sqrt {13} }}\) \( = {{ - 8\sqrt {13} } \over {65}}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"