Bài 21 trang 90 SGK Hình học 12 Nâng cao

2024-09-14 19:42:01

Tìm điểm M trên trục Oz trong mỗi trường hợp sau :

LG a

M cách đều điểm A(2 ; 3 ; 4) và mặt phẳng \(2x + 3y + z - 17 = 0\);

Lời giải chi tiết:

Giả sử \(M\left( {0;0;c} \right)\) thuộc trục Oz.
Ta có \(MA = \sqrt {{2^2} + {3^2} + {{\left( {4 - c} \right)}^2}} \) và khoảng cách từ điểm M đến mặt phẳng đã cho là \(d = {{\left| {c - 17} \right|} \over {\sqrt {{2^2} + {3^2} + {1^2}} }}\)

\(MA = d \Leftrightarrow \sqrt {13 + {{\left( {4 - c} \right)}^2}}  = {{\left| {c - 17} \right|} \over {\sqrt {14} }} \) \(\Leftrightarrow 13 + {\left( {4 - c} \right)^2} = {{{{\left( {c - 17} \right)}^2}} \over {14}} \) \(\Leftrightarrow c = 3.\)

Vậy \(M\left( {0,0,3} \right)\).


LG b

M cách đều hai mặt phẳng \(x + y - z + 1 = 0\) và \(x - y + z + 5 = 0\)

Lời giải chi tiết:

\(M\left( {0;0;c} \right)\) cách đều hai mặt phẳng đã cho khi và chỉ khi:

\({{\left| { - c + 1} \right|} \over {\sqrt 3 }} = {{\left| {c + 5} \right|} \over {\sqrt 3 }} \) \(\Leftrightarrow c =  - 2 \Rightarrow M\left( {0;0; - 2} \right)\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"