Bài 20 trang 90 SGK Hình học 12 Nâng cao

2024-09-14 19:42:01

Đề bài

Tìm khoảng cách giữa hai mặt phẳng

\(Ax + By + Cz + D = 0\) và \(Ax + By + Cz + D' = 0\) với \(D \ne D'\).

Phương pháp giải - Xem chi tiết

Hai mặt phẳng đã cho song song với nhau, nên khoảng cách giữa 2 mặt phẳng là khoảng cách từ 1 điểm M bất kì đến mặt phẳng kia.

Lời giải chi tiết

Hai mặt phẳng đã cho song song với nhau.

Lấy \(M\left( {{x_0},{y_0},{z_0}} \right)\) thuộc mặt phẳng \(Ax + By + Cz + D = 0\).

Ta có \(A{x_0} + B{y_0} + C{z_0} + D = 0\) \( \Rightarrow A{x_0} + B{y_0} + C{z_0} =  - D\)

Khoảng cách giữa hai mặt phẳng bằng khoảng cách từ điểm M đến mặt phẳng thứ hai, ta có:

\(d = {{\left| {A{x_0} + B{y_0} + C{z_0} + D'} \right|} \over {\sqrt {{A^2} + {B^2} + {C^2}} }}\) \( = {{\left| {D' - D} \right|} \over {\sqrt {{A^2} + {B^2} + {C^2}} }}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"