Bài 4 trang 110 SGK Hình học 12 Nâng cao

2024-09-14 19:42:07

Cho điểm A(2; 3; 1) và hai đường thẳng:

\({d_1}:\left\{ \matrix{
x = - 2 - t \hfill \cr 
y = 2 + t \hfill \cr 
z = 2t \hfill \cr} \right.;\) \({d_2}:{{x + 5} \over 3} = {{y - 2} \over { - 1}} = {z \over 1}\)

LG a

Viết phương trình mp(P) đi qua A và \({d_1}\).

Lời giải chi tiết:

Đường thẳng \({d_1}\) qua \({M_1}\left( { - 2;2;0} \right)\) có vectơ chỉ phương \(\overrightarrow u {  _1} = \left( { - 1;1;2} \right)\).

Mp(P) qua A và \({d_1}\) có vectơ pháp tuyến \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AM} ;\overrightarrow {{u_1}} } \right] = \left( { - 1;9; - 5} \right)\).
Vậy mp(P) có phương trình: \( - \left( {x + 2} \right) + 9\left( {y - 2} \right) - 5z = 0 \) \(\Leftrightarrow x - 9y + 5z + 20 = 0\).


LG b

Viết phương trình mp(Q) đi qua A và \({d_2}\).

Lời giải chi tiết:

Đường thẳng \({d_2}\) qua \({M_2}\left( { - 5;2;0} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {3; - 1;1} \right)\).

Mp(Q) qua A và \({d_2}\) có vectơ pháp tuyến \(\overrightarrow {{n_Q}}  = \left[ {\overrightarrow {A{M_2}} ,\overrightarrow {{u_2}} } \right] = \left( { - 2;4;10} \right)\).
Vậy mp(Q) có phương trình: \( - 2\left( {x -2} \right) + 4\left( {y - 3} \right) + 10(z-1) = 0\) \( \Leftrightarrow x - 2y - 5z + 9 = 0\)


LG c

Viết phương trình đường thẳng d đi qua A cắt cả \({d_1}\) và \({d_2}\).

Lời giải chi tiết:

Đường thẳng d đi qua A, cắt cả \({d_1}\) và \({d_2}\) nên d nằm trên cả hai mặt phẳng (P) và (Q), tức là d gồm những điểm có tọa độ thỏa mãn phương trình:

\(\left\{ \matrix{
x - 9y + 5z + 20 = 0 \hfill \cr 
x - 2y - 5z + 9 = 0 \hfill \cr} \right.\).

Đặt x = t ta được hệ

\(\left\{ \matrix{
x = t \hfill \cr 
y = {{29} \over {11}} + {2 \over {11}}t \hfill \cr 
z = {{41} \over {55}} + {7 \over {55}}t \hfill \cr} \right.\).

Đây là phương trình tham số của đường thẳng d, d và \({d_1}\) cùng thuộc mp(P) và có vectơ chỉ phương không cùng phương nên cắt nhau.

d và \({d_2}\) cùng thuộc mp(Q) và có các vectơ chỉ phương không cùng phương nên cắt nhau.


LG d

Tính khoảng cách từ A đến \({d_2}\).

Lời giải chi tiết:

Khoảng cách từ điểm A đến \({d_2}\) là: \(d = {{\left| {\left[ {\overrightarrow {A{M_2}} ;\overrightarrow {{u_2}} } \right]} \right|} \over {\left| {\overrightarrow {{u_2}} } \right|}} = {{\sqrt {4 + 16 + 100} } \over {\sqrt {9 + 1 + 1} }} = {{2\sqrt {30} } \over {\sqrt {11} }}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"