Bài 12 trang 124 SGK Hình học 12 Nâng cao

2024-09-14 19:42:12

Cho hình hộp chữ nhật ABCD.A’B’C’D’ với AB = a, BC = b, CC’ = c.

LG a

Tính khoảng cách từ điểm tới mp(A’BD).

Lời giải chi tiết:

Chọn hệ trục tọa độ Oxyz như hình vẽ.

Ta có: \(A'\left( {0;0;c} \right),\,\,B\left( {a;0;0} \right),\,\,D\left( {0;b;0} \right).\)
Phương trình mặt phẳng (A’BD) là: \({x \over a} + {y \over b} + {z \over c} - 1 = 0.\)
Khoảng cách từ A(0; 0; 0) tới mp(A’BD) là:

\(d = {{\left| { - 1} \right|} \over {\sqrt {{1 \over {{a^2}}} + {1 \over {{b^2}}} + {1 \over {{c^2}}}} }} = {{abc} \over {\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}.\)


LG b

Tính khoảng cách từ điểm A’ tới đường thẳng C’D.

Lời giải chi tiết:

Ta có \(C'\left( {a;b;c} \right).\)

\(\eqalign{
& \overrightarrow {A'C'} = \left( {a,b,0} \right),\overrightarrow {C'D} = \left( { - a;0; - c} \right) \cr 
& \left[ {\overrightarrow {A'C'} ,\overrightarrow {C'D} } \right] = \left( { - bc,ac,ab} \right). \cr} \)

Khoảng cách từ \(A'\left( {0,0,c} \right)\) tới đường thẳng C’D là:

\({h_1} = {{\left| {\left[ {\overrightarrow {A'C'} ,\overrightarrow {C'D} } \right]} \right|} \over {\left| {\overrightarrow {C'D} } \right|}} = {{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} } \over {\sqrt {{a^2} + {c^2}} }}.\)


LG c

Tính khoảng cách giữa hai đường thẳng BC’ và CD’.

Lời giải chi tiết:

Ta có \(\overrightarrow {BC'}  = \left( {0,b,c} \right),\overrightarrow {CD'}  = \left( { - a,0,c} \right),\) \(\overrightarrow {BC}  = \left( {0,b,0} \right).\)

Khoảng cách giữa BC’ và CD’ là:

\({h_2} = {{\left| {\left[ {\overrightarrow {BC'} ,\overrightarrow {CD'} } \right].\overrightarrow {BC} } \right|} \over {\left| {\left[ {\overrightarrow {BC'} ,\overrightarrow {CD'} } \right]} \right|}} = {{abc} \over {\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"