Đề kiểm tra 15 phút - Đề số 5 - Chương II - Giải Tích 12

2024-09-14 19:42:35

Đề bài

Câu 1. Tập  nghiệm của phương trình \(\dfrac{1}{2}{\log _2}{(x + 2)^2} - 1 = 0\) là:

A. \(\left\{ {0; - {\rm{ }}4} \right\}\)                 B. \(\left\{ 0 \right\}\)                         

C. \(\left\{ { - 1;0} \right\}\)                  D. \(\left\{ { - 4} \right\}\).

Câu 2. Cho phương trình \({3^{1 + x}} + {3^{1 - x}} = 10\). Chọn đáp án đúng :

A. Có hai nghiệm cùng âm.            

B. Có hai nghiệm trái dấu.

C. Vô nghiệm                                 

D. Có hai nghiệm dương.

Câu 3. Phương trình \({3^{x + 1}} = 1\) có nghiệm là

A. \(x =  - 1\)                     B. \(x =  - \dfrac{1}{ 2}\)x       

C. \(x = \dfrac{1 }{2}\)                       D. \(x =1.\)

Câu 4. \({\log _{{1 \over a}}}\root 3 \of {{a^5}} \,\,\,(a > 0,a \ne 1)\) bằng:

A. \( - \dfrac{7 }{ 3}\)                      B. \(\dfrac{2 }{ 3}\)           

C. 4                          D. \(-\dfrac{5 }{ 3}\)

Câu 5. Tập xác định của hàm số \(y = \sqrt {{9^x} - {3^x}} \)  là

A. \([0; + \infty )\)                     B. \((5; + \infty )\)      

C. R\{5}                           D. R\{0 ; 5}

Câu 6. Nghiệm của phương trình \({\left( {\dfrac{3 }{5}} \right)^x} = {\left( {\dfrac{5 }{ 3}} \right)^3}\) là:

A. -1                          B . 1            

C. 3                           D. -3 .

Câu 7. Tập nghiệm của bất phương trình \({\log _{{1 \over 2}}}(2x - 1) > {\log _{{1 \over 2}}}(x + 1)\) là:

A. \((2; + \infty )\)                   

B. \(\left( {\dfrac{1 }{ 2};2} \right)\)                            

C. \(( - \infty ;2)\)                

D. \(\left( { - \dfrac{1 }{2};2} \right)\).

Câu 8. Giá trị của \({\log _{0,5}}0,125\) bằng:

A. 5                           B. 3      

C. 4                           D. 2

Câu 9. Cho \(a,b > 0\) và \(a,b \ne 1\), x và y là hai số dương. Tìm mệnh đề đúng :

A. \({\log _a}(x + y) = {\log _a}x + {\log _a}y\).

B. \({\log _a}{1 \over x} = \dfrac{1 }{ {{{\log }_a}x}}\).

C. \({\log _a}{x \over y} = \dfrac{{{{\log }_a}x} }{{{{\log }_a}y}}\).

D. \({\log _b}x = {\log _b}a.{\log _a}x\).

Câu 10. Hàm số \(y = {2^{\ln x + {x^2}}}\) có đạo hàm \(y’\) là:

A. \(\left( {\dfrac{1}{x} + 2x} \right){2^{\ln x + {x^2}}}\)           

B. \(\left( {\dfrac{1 }{ x} + 2x} \right){2^{\ln x + {x^2}}}\ln 2\)         

C. \(\dfrac{{{2^{\ln x + {x^2}}}}}{{\ln 2}}\)                        

D. \(\left( {\dfrac{1}{x} + 2x} \right)\dfrac{{{2^{\ln x + {x^2}}}}}{{\ln 2}}\)

Lời giải chi tiết

Câu

1

2

3

4

5

Đáp án

A

B

A

D

A

Câu

6

7

8

9

10

Đáp án

D

B

B

D

B

Câu 1. Điều kiện xác định: \(D = R\) . Phương trình trở thành

\(\begin{array}{l}\dfrac{1}{2}{\log _2}{\left( {x + 2} \right)^2} = 1\\ \Leftrightarrow {\log _2}{\left( {x + 2} \right)^2} = 2\\ \Leftrightarrow {\left( {x + 2} \right)^2} = 4\\ \Leftrightarrow {x^2} + 2x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\end{array} \right.\end{array}\)

Chọn đáp án A.

Câu 2. Ta có

\(\begin{array}{l}{3^{1 + x}} + {3^{1 - x}} = 10\,\\ \Leftrightarrow {3.3^x} + \dfrac{3}{{{3^x}}} - 10 = 0\\ \Leftrightarrow \,3.{\left( {{3^x}} \right)^2} + 3 - {10.3^x} = 0\\ \Leftrightarrow \,\,\left[ \begin{array}{l}{3^x} = 3\\{3^x} = \dfrac{1}{3}\end{array} \right.\,\, \Leftrightarrow \,\,\,\left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\end{array}\)

Vậy phương trình có hai nghiệm trái dấu.

Chọn đáp án B.

Câu 3. Ta có \({3^{x + 1}} = 1\,\,\, \Leftrightarrow {3^{x + 1}} = {3^0}\,\)\( \Leftrightarrow x + 1 = 0\,\,\, \Leftrightarrow x =  - 1\)

Chọn đáp án A.

Câu 4. \({\log _{\dfrac{1}{a}}}\sqrt[3]{{{a^5}}} = {\log _{{a^{ - 1}}}}{a^{\dfrac{5}{3}}} \)\(\,=  - \dfrac{5}{3}{\log _a}a =  - \dfrac{5}{3}\)

Chọn đáp án D.

Câu 5. Điều kiện xác định: \({9^x} - {3^x} \ge 0\,\, \Leftrightarrow \,\,{\left( {{3^x}} \right)^2} - {3^x} \ge 0\)

\(\Leftrightarrow \left[ \begin{array}{l}{3^x} \le 0\\{3^x} \ge 1\end{array} \right. \Leftrightarrow {3^x} \ge 1\,\, \Leftrightarrow x \ge 0\)

Chọn đáp án A.

Câu 6. Ta có \({\left( {\dfrac{3}{5}} \right)^x} = {\left( {\dfrac{5}{3}} \right)^3}\)

\(\Leftrightarrow {\left( {\dfrac{3}{5}} \right)^x} = {\left( {\dfrac{3}{5}} \right)^{ - 3}}\)

\(\Rightarrow x =  - 3\)

Chọn đáp án D.

Câu 7. Điều kiện xác định: \(\left\{ \begin{array}{l}2x - 1 > 0\\x + 1 > 0\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}x > \dfrac{1}{2}\\x >  - 1\end{array} \right.\,\, \Leftrightarrow \,\,x > \dfrac{1}{2}\) .

Vì cơ số \(\dfrac{1}{2}<1\) nên bất phương trình tương đương

\(2x - 1 < x + 1 \Leftrightarrow x < 2\)

So với điều kiện ta có \(x \in \left( {\dfrac{1}{2};2} \right)\)

Chọn đáp án B.

Câu 8. Ta có \({\log _{0,5}}0,125 = {\log _{0,5}}0,{5^3} \)\(\,= 3{\log _{0,5}}0,5 = 3\)

Chọn đáp án B.

Câu 10. Theo công thức tính đạo hàm của hàm số mũ, ta có

\(y' = \left( {\ln x + {x^2}} \right)'{.2^{\ln x + {x^2}}}.\ln 2 \)

\(\;\;\;\;=\left( {\dfrac{1}{x} + 2x} \right){.2^{\ln x + {x^2}}}.\ln 2\)

Chọn đáp án B.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"