Đề kiểm tra 15 phút - Đề số 2 - Chương III - Giải tích 12

2024-09-14 19:42:36

Đề bài

Câu 1. Chọn mệnh đề đúng :

A. \(\int {0dx = C} \)      

B. \(\int {dx = C} \)

C. \(\int {dx}  = 0\)           

D. \(\int {0dx = x + C} \).

Câu 2. Chọn mệnh đề sai :

A. \(\int {\dfrac{1}{{{{\cos }^2}x}}dx = \tan x + C} \).   

B. \(\int {\dfrac{1}{{{{\sin }^2}x}}dx = \cot x + C} \).

C. \(\int {\dfrac{1}{{{{\sin }^2}x}}dx =  - \cot x + C} \). 

D \(\int {\dfrac{1}{{{{\cos }^2}x}}} dx = \dfrac{{\sin x}}{{\cos x}} + C\)

Câu 3. Trong các khẳng định sau, khẳng định nào đúng ?

A. \(\int\limits_{ - 1}^1 {dx = 1} \).

B. \(\int\limits_a^b {f(x)\,dx.\int\limits_a^b {g(x)\,dx = \int\limits_a^b {f(x).g(x)\,dx} } } \).

C. Nếu f(x) liên tục và không âm trên đoạn [a ; b] thì \(\int\limits_a^b {f(x)\,dx \ge 0} \).

D. Nếu \(\int\limits_a^b {f(x)\,dx = 0} \) với \(a \ne b\) thì \(f(x) = 0\).

Câu 4. Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {x\cos (a - x)\,dx} \):

A. \(I = \left( {1 - \dfrac{\pi }{2}} \right)\cos a + \sin a\).    

B. \(I = \left( {1 - \dfrac{\pi }{2}} \right)\cos a - \sin a\).

C. \(I = \left( {\dfrac{\pi }{2} - 1} \right)\cos a + \sin a\).  

D. \(I = \left( {\dfrac{\pi }{2} + 1} \right)\cos a - \sin a\).

Câu 5. Chọn khẳng định sai trong các khẳng định sau:

A. \(\int {{e^x}\,dx}  = {e^x} + C\)        

B. \(\int {\sin x\,dx =  - \cos x + C} \)

C. \(\int {\dfrac{1}{{{x^2}\,}}\,dx}  =  - \dfrac{1}{x} + C\,\,\,(x \ne 0)\)   

D. \(\int {{a^x}\,dx}  = {a^x} + C\).

Câu 6. Tính \(I = \int {{e^{3 - 5x}}\,dx} \).

A. \(I = \dfrac{1}{5}{e^{3 - 5x}} + C\).   

B. \(I =  - \dfrac{1}{5}{e^{3 - 5x}} + C\).

C. \(I = {e^{3 - 5x}} + C\).     

D. \(I =   \dfrac{1}{5}{e^{3 - 5x}} + C\).

Câu 7. Diện tích hình phẳng giới hạn bởi đường cong \(y = {x^3} - 4x\), trục hoành và hai đường thẳng x = - 3 , x = 4 là:

A. \(\dfrac{{202}}{3}\)                    B. \(\dfrac{{203}}{4}\)    

C. \(\dfrac{{201}}{5}\)                     D. \(\dfrac{{201}}{4}\).

Câu 8. Biết \(\int\limits_0^1 {\dfrac{{{x^3}}}{{{x^2} + 1}}\,dx}  = \dfrac{1}{2} - \dfrac{1}{{a + 1}}\ln 2\). Tính a.

A. a = 2                      B. a = -2  

C. a = 1                      D. a = 0.

Câu 9. Họ các nguyên hàm của hàm số f(x)=sinx+ cosx là:

A. six2x + C .                    

B. –cosx – sinx + C

C. cosx + sinx + C.                

D. sinx – cosx + C.

Câu 10. Tìm \(I = \int {\dfrac{1}{{4 - {x^2}}}\,dx} \).

A. \(I = \dfrac{1}{4}\ln \left| {\dfrac{{x - 2}}{{x + 2}}} \right|\)   

B. \(I = \dfrac{1}{2}\ln \left| {\dfrac{{x + 2}}{{x - 2}}} \right|\).

C. \(I = \dfrac{1}{4}\ln \left| {\dfrac{{x + 2}}{{x - 2}}} \right|\).      

D. \(I = \dfrac{1}{2}\ln \left| {\dfrac{{x - 2}}{{x + 2}}} \right|\)

Lời giải chi tiết

1

2

3

4

5

A

B

C

C

D

6

7

8

9

10

B

D

C

D

C

 Lời giải chi tiết 

Câu 1.

Mệnh đề đúng là \(\int {0dx = C} \)

Chọn đáp án A.

Câu 2.

Ta có:

Mệnh đề B sai.

Chọn đáp án B.

Câu 3.

+ \(\int\limits_{ - 1}^1 {dx = x\left| {_{ - 1}^1} \right.}  = 1 - \left( { - 1} \right) = 2.\)

+ Nếu \(f\left( x \right)\) liên tục và không âm trên đoạn \(\left[ {a;b} \right]\)thì .

+ Nếu  với  thì .

Chọn đáp án B.

Câu 4.

Ta có:

\(\int\limits_0^{\dfrac{\pi }{2}} {x\cos (a - x)\,dx}  \)\(\,=  - \int\limits_0^{\dfrac{\pi }{2}} {x\,d\left( {\sin \left( {a - x} \right)} \right)}\)\(\,  =  - \left( {x\sin \left( {a - x} \right)} \right)\left| \begin{array}{l}^{\dfrac{\pi }{2}}\\_0\end{array} \right. + \int\limits_0^{\dfrac{\pi }{2}} {\sin \left( {a - x} \right)\,dx} \)

\( = \dfrac{\pi }{2}\cos a + \cos \left( {a - x} \right)\left| \begin{array}{l}^{\dfrac{\pi }{2}}\\_0\end{array} \right. \)

\(= \dfrac{\pi }{2}\cos a + \sin a - \cos a\)

Chọn đáp án C.

Câu 5.

Ta có các khẳng định đúng:

\(\begin{array}{l} + \,\,\int {{e^x}dx = {e^x} + C} \\ + \,\,\int {\sin xdx =  - \cos x + C} \\ + \,\,\int {\frac{1}{{{x^2}}}dx =  - \frac{1}{x} + C\,\,\,\left( {x \ne 0} \right)} \end{array}\)

Chọn đáp án D.

Câu 6.

Ta có: \(I = \int {{e^{3 - 5x}}\,dx}  \)\(\,=  - \dfrac{1}{5}\int {{e^{3 - 5x}}\,d\left( {3 - 5x} \right)} \)\(\, =  - \dfrac{1}{5}{e^{3 - 5x}} + C\)

Chọn đáp án B

Câu 7.

Diện tích hình phẳng được xác định bởi công thức

\(S = \int\limits_{ - 3}^4 {\left| {{x^3} - 4x} \right|} \,dx = \left| {\dfrac{{{x^4}}}{4} - 2{x^2}} \right|\,\left| \begin{array}{l}^4\\_{ - 3}\end{array} \right. \)\(\,= \left| {32 - \dfrac{9}{4}} \right| = \dfrac{{119}}{4}\)

Câu 8.

Ta có:

\(\int\limits_0^1 {\dfrac{{{x^3}}}{{{x^2} + 1}}\,dx}  \)

\(= \dfrac{1}{2}\int\limits_0^1 {\dfrac{{{x^2} + 1 - 1}}{{{x^2} + 1}}} \,d\left( {{x^2} + 1} \right) \)

\(= \dfrac{1}{2}\int\limits_0^1 {\left( {1 - \dfrac{1}{{{x^2} + 1}}} \right)\,d\left( {{x^2} + 1} \right)} \)

\( = \dfrac{1}{2}\left( {{x^2} + 1 - \ln \left( {{x^2} + 1} \right)} \right)\left| \begin{array}{l}^1\\_0\end{array} \right.\)

\(= \dfrac{1}{2}\left( {2 - \ln 2 - 1} \right)\)

\(= \dfrac{1}{2} - \dfrac{1}{2}\ln 2.\)

Khi đó \(a = 1\)

Chọn đáp án C.

Câu 9.

Ta có: \(\int {\left( {\sin x + \cos x} \right)} \,dx \)\(\,= \left( { - \cos x + \sin x} \right) + C\)

Chọn đáp án D.

Câu 10.

Ta có:

\(I = \int {\dfrac{1}{{4 - {x^2}}}\,dx}  \)

\(\;\;\;= \int {\dfrac{1}{{\left( {2 - x} \right)\left( {2 + x} \right)}}\,dx}  \)

\(\;\;\;= \dfrac{1}{4}\int {\left( {\dfrac{1}{{2 - x}} + \dfrac{1}{{2 + x}}} \right)} \,dx\)

\(\;\;\; =  - \dfrac{1}{4}\ln \left| {2 - x} \right| + \dfrac{1}{4}\ln \left| {2 + x} \right| + C\)

\(\;\;\; = \dfrac{1}{4}\ln \left| {\dfrac{{2 + x}}{{2 - x}}} \right| + C\)

Chọn đáp án C

[hoctot.me - Trợ lý học tập AI]

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"