Đề kiểm tra 45 phút (1 tiết) – Đề số 5 – Chương III - Giải tích 12

2024-09-14 19:43:09

Đề bài

Câu 1. Tìm \(I = \int {\dfrac{{{{\cos }^3}x}}{{1 + \sin x}}\,dx} \).

A. \(I =  - \dfrac{1}{2}{\sin ^2}x + \sin x + C\).

B. \(I = \dfrac{1}{2}{\sin ^2}x + \sin x + C\).

C. \(I = {\sin ^2}x - \sin x + C\)

D. \(I =  - \dfrac{1}{2}{\sin ^2}x - \sin x + C\).      

Câu 2. Một vật chuyển động với vận tốc \(v(t) = 1,2 + \dfrac{{{t^2} + 4}}{{1 + 3}}\,\,\,(m/s)\). Quãng đường vật đi được sau 4s  xấp xỉ bằng :

A. 11m                           B. 12m 

C. 13m                            D. 14m.

Câu 3. Cho hai hàm số \(f(x) = {x^2},\,\,g(x) = {x^3}\). Chọn mệnh đề đúng :

A. \(\int\limits_0^1 {f(x)\,dx \ge 0} \).     

B. \(\int\limits_0^1 {g(x)\,dx \le 0} \).

C. \(\int\limits_0^1 {g(x)\,dx \ge \int\limits_0^1 {f(x)\,dx} } \). 

D. \(\int\limits_0^1 {f(x)\,dx \le 0} \).

Câu 4. Đặt \(I = \int\limits_1^e {\ln x\,dx} \). Lựa chọn phương án đúng :

A. I = 1.                        

B. Cả ba phương án đều sai.

C. I = 2 – e                                   

D. I = 3 – 1 .

Câu 5. Cho f(x) là hàm liên tục trên (a ; b) và không phải là hàm hằng. Giả sử F(x) là một nguyên hàm của f(x). Lựa chọn phương án đúng:

A. F(x) –C không phải là nguyên hàm của f(x) với mọi số thực C.

B. F(x) +2C không phải là nguyên hàm của f(x) với mọi số thực C.

C. CF(x) không phải là nguyên hàm của f(x) với mọi số thực \(C \ne 1\).

D. Cả 3 phương án đều sai.

Câu 6. Tính nguyên hàm \(\int {{{\left( {{e^3}} \right)}^{\cos x}}\sin x\,dx} \) ta được:

A. \( - {e^{3\cos x}} + C\).       

B. \({e^{3\cos x}} + C\).

C. \( - \dfrac{{{e^{3\cos x}}}}{3} + C\).                 

D. \(\dfrac{{{e^{3\cos x}}}}{3} + C\).

Câu 7. Tính nguyên hàm \(\int {\dfrac{{2{x^2} - 7x + 7}}{{x - 2}}\,dx} \) ta được:

A. \({x^2} - 3x - \ln |x - 2| + C\).   

B. \({x^2} - 3x + \ln |x - 2| + C\).

C. \(2{x^2} - 3x - \ln |x - 2| + C\)

D.\(2{x^2} - 3x + \ln |x - 2| + C\).

Câu 8. Chọn phương án đúng .

A. \(\int {\dfrac{{dx}}{{{x^\alpha }}} = \dfrac{{{x^{1 - \alpha }}}}{{1 - \alpha }} + C\,,\forall \alpha  \in R} \).

B. \(\int {\dfrac{{dx}}{x} = \ln |Cx|} \), với C là hằng số .

C. \(\int {\dfrac{{dx}}{{\left( {x + a} \right)\left( {x + b} \right)}} = \dfrac{1}{{a - b}}\ln \left| {\dfrac{{x + b}}{{x + a}}} \right| + C} \), với mọi số thực a, b.

D. Cả 3 phương án trên đều sai.

Câu 9. Tính nguyên hàm \(\int {{3^{{x^2}}}x\,dx} \) ta được:

A. \(\dfrac{{{3^{{x^2}}}}}{2}\ln 3 + C\).         

B. \({3^{{x^2}}} + C\).

C. \(\dfrac{{{3^{{x^2}}}}}{{2\ln 3}} + C\).            

D. \(\dfrac{{{3^{{x^2}}}}}{2} + C\).

Câu 10. Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {x.\cos \left( {a - x} \right)\,dx} \).

A. \(I = \left( {1 - \dfrac{\pi }{2}} \right)\cos a + \sin a\).

B. \(I = \left( {1 - \dfrac{\pi }{2}} \right)\cos a - \sin a\).

C. \(I = \left( {\dfrac{\pi }{2} - 1} \right)\cos a + \sin a\).

D. \(I = \left( {1 + \dfrac{\pi }{2}} \right)\cos a - \sin a\)

Câu 11. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục hoành và hai đường thẳng x = - 1 , x = - 2 .

A. 17                           B. \(\dfrac{{17}}{4}\)

C. \(\dfrac{{15}}{4}\)                           D. 4.

Câu 12. Tìm hàm số F(x) biết rằng \(F'(x) = \dfrac{1}{{{{\sin }^2}x}}\) và đồ thị của hàm số F(x) đi qua điểm \(M\left( {\dfrac{\pi }{6};0} \right)\).

A. \(F(x) = \cot x + \sqrt 3 \).    

B. \(F(x) =  - \cot x + \sqrt 3 \).

C. \(F(x) = \dfrac{1}{{\sin x}} + \sqrt 3 \).     

D. \(F(x) =  - \dfrac{1}{{\sin x}} + \sqrt 3 \).

Câu 13. Xét hàm số f(x) có \(\int {f(x)\,dx = F(x) + C} \). Với a, b là các số thực và \(a \ne 0\), khẳng định nào sau đây luôn đúng ?

A. \(\int {f(ax + b) = \dfrac{1}{a}F(ax + b) + C} \). 

B. \(\int {f(ax + b) = aF(ax + b) + C} \).

C. \(\int {f(ax + b) = F(ax + b) + C} \).

D. \(\int {f(ax + b) = aF(x) + b + C} \).

Câu 14. Biến đổi \(\int\limits_0^3 {\dfrac{x}{{1 + \sqrt {1 + x} }}\,dx} \)thành \(\int\limits_1^2 {f(t)\,dt\,,\,\,t = \sqrt {x + 1} } \). Khi đó f(t) là hàm nào trong các hàm số sau ?

A. \(f(t) = 2{t^2} + 2t\).            

B. \(f(t) = 2{t^2} - 2t\).

C. \(f(t) = {t^2} + t\).           

D. \(f(t) = {t^2} - t\).

Câu 15. Cho hàm số f liên tục trên đoạn [0 ; 6]. Nếu \(\int\limits_1^5 {f(x)\,dx = 2\,,\,\,\int\limits_1^3 {f(x)\,dx = 7} } \) thì \(\int\limits_3^5 {f(x)\,dx} \) có giá trị bằng bao nhiêu ?

A. 5                             B. -5      

C. 9                              D. -9 .

Câu 16. Cho tích phân \(I = \int\limits_a^b {f(x).g'(x)\,dx} \) , nếu đặt \(\left\{ \begin{array}{l}u = f(x)\\dv = g'(x)\,dx\end{array} \right.\) thì:

A. \(I = f(x).g'(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f'(x).g(x)\,dx} \)

B. \(I = f(x).g(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f(x).g(x)\,dx} \).

C. \(I = f(x).g(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f'(x).g(x)\,dx} \)

D. \(I = f(x).g'(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f(x).g'(x)\,dx} \).

Câu 17. Biết \(\int\limits_1^4 {f(t)\,dt = 3,\,\,\int\limits_1^2 {f(t)\,dt = 3} } \). Phát biểu nào sau đây nhân giá trị đúng ?

A. \(\int\limits_2^4 {f(t)\,dt = 3} \).        

B. \(\int\limits_2^4 {f(t)\,dt =  - 3} \).

C. \(\int\limits_2^4 {f(t)\,dt = 6} \).       

D. \(\int\limits_2^4 {f(t)\,dt = 0} \).

Câu 18.Tìm nguyên hàm của hàm số \(f(x) = {2^{2x}}{.3^x}{.7^x}\).

A. \(\int {f(x)\,dx = \dfrac{{{{84}^x}}}{{\ln 84}} + C} \).

B. \(\int {f(x)\,dx = \dfrac{{{2^{2x}}{3^x}{7^x}}}{{\ln 4.\ln 3.\ln 7}} + C} \).

C. \(\int {f(x)\,dx = {{84}^x} + C} \). 

D. \(\int {f(x)\,dx = {{84}^x}\ln 84 + C} \).

Câu 19. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt x  - x\) và trục hoành.

A. 1                            B. \(\dfrac{1}{6}\)       

C. \(\dfrac{5}{6}\)                           D. \(\dfrac{1}{3}\).

Câu 20. Tìm nguyên hàm của hàm số \(f(x) = \dfrac{{{{\left( {{x^2} - 1} \right)}^2}}}{{{x^2}}}\).

A. \(\dfrac{{{x^3}}}{3} - 2x - \dfrac{1}{x} + C\).

B. \(\dfrac{{{x^3}}}{3} - 2x + \dfrac{1}{x} + C\).

C. \(\dfrac{{{x^3}}}{3} + \dfrac{1}{x} + C\).              

D. \(\dfrac{{{x^3}}}{2} + 2x - \dfrac{1}{x} + C\).

Câu 21. Nguyên hàm của hàm số \(f(x) = \dfrac{{\cos 2x}}{{{{\cos }^2}x{{\sin }^2}x}}\)  là:

A. \(\cot x - \tan x\).         

B. \( - \cot x + \tan x\).

C. \( - \cot x - \tan x\).          

D. \(\cot x + \tan x\).

Câu 22. Tính tích phân \(\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {\cot x\,dx} \) ta được kết quả là :

A. \(\ln \dfrac{{\sqrt 2 }}{2}\).   

B. \(\ln \dfrac{{\sqrt 3 }}{2}\).

C. \( - \ln \dfrac{{\sqrt 2 }}{2}\).                 

D. \( - \ln \dfrac{{\sqrt 3 }}{2}\).

Câu 23. Thể tích của khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường có phương trình \(y = {x^{\dfrac{1}{2}}}{e^{\dfrac{x}{2}}}\), trục Ox, x =1 , x = 2 quay một vòng quanh trục Ox bằng :

A. \(\pi e\).                        B. \(2\pi {e^2}\)   

C. \(4\pi \)                         D. \(16\pi \).

Câu 24. Diện tích hình phẳng giới hạn bởi các đường thẳng y = 1, y = x và đồ thị hàm số \(y = \dfrac{{{x^2}}}{4}\) trong miền \(x \ge 0,y \le 1\) là \(\dfrac{a}{b}\). Khi đó b – a bằng:

A. 4                              B. 2  

C. 3                              D. - 1

Câu 25. Cho \(I = \int\limits_0^1 {\left( {2x + 1} \right){e^x}\,dx} \). Đặt \(\left\{ \begin{array}{l}u = 2x + 1\\dv = {e^x}\,dx\end{array} \right.\). Chọn khẳng định đúng .

A.   A. \(I = 3e - 1 + 2\int\limits_0^1 {{e^x}\,dx} \).  

B. \(I = 3e - 1 - 2\int\limits_0^1 {{e^x}\,dx} \).

C. \(I = 3e - 2\int\limits_0^1 {{e^{x\,}}\,dx} \).            

D. \(I = 3e + 2\int\limits_0^1 {{e^x}\,dx} \).

Lời giải chi tiết

1

2

3

4

5

A

B

A

A

C

6

7

8

9

10

C

B

B

C

C

11

12

13

14

15

C

B

A

B

B

16

17

18

19

20

C

D

A

B

A

21

22

23

24

25

C

C

B

D

B

 Lời giải chi tiết 

Câu 1.

Ta có:

\(I = \int {\dfrac{{{{\cos }^3}x}}{{1 + \sin x}}\,dx} \)

\(= \int {\dfrac{{{{\cos }^2}x}}{{1 + \sin x}}} \,d\left( {\sin x} \right) \)

\(= \int {\dfrac{{1 - {{\sin }^2}x}}{{1 + \sin x}}} \,d\left( {\sin x} \right)\)

\( = \int {\left( {1 - \sin x} \right)} \,d\left( {\sin x} \right) \)

\(= \left( {\sin x - \dfrac{1}{2}{{\sin }^2}x} \right) + C\)

Chọn đáp án A.

Câu 2.

Quãng đường vật đi được sau 4s là:

\(s\left( t \right) = \int\limits_0^4 {\left( {1,2 + \dfrac{{{t^2} + 4}}{{t + 3}}} \right)\,dt}  \)

\(= \int\limits_0^4 {\left( {1,2 + t - 3 + \dfrac{{13}}{{t + 3}}} \right)\,dt}  \)

\(= \left( {\dfrac{{{t^2}}}{2} - 1,8t + 13\ln \left| {t + 3} \right|} \right)\left| \begin{array}{l}^4\\_0\end{array} \right.\)

\( = \left( {8 - 1,8.4 + 13\ln 7} \right) - 13\ln 3\)\( \approx 12\left( m \right)\)

Chọn đáp án B.

Câu 3.

Ta có: \(\int\limits_0^1 {f\left( x \right)} \,dx = \int\limits_0^1 {{x^2}} dx = \left( {\dfrac{{{x^3}}}{3}} \right)\left| \begin{array}{l}^1\\_0\end{array} \right. = \dfrac{1}{3}\)

\(\int\limits_0^1 {g\left( x \right)} \,dx = \int\limits_0^1 {{x^3}} dx = \left( {\dfrac{{{x^4}}}{4}} \right)\left| \begin{array}{l}^1\\_0\end{array} \right. = \dfrac{1}{4}\)

Chọn đáp án A.

Câu 4.

Đặt  \(\left\{ \begin{array}{l}u = \ln x\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = x\end{array} \right.\)

Khi đó ta có: \(I = \int\limits_1^e {\ln x\,dx}  = \left( {x\ln x} \right)\left| {_1^e} \right. - \int\limits_1^e {dx} \)\(\, = e - \left( x \right)\left| {_1^e} \right. = e - \left( {e - 1} \right) = 1\)

Chọn đáp án A.

Câu 5.

Ta có \(\int {f\left( x \right)} \,dx = F\left( x \right) + C\)

\( \Rightarrow \)\(CF\left( x \right)\) không phải là nguyên hàm của \(f\left( x \right)\)với mọi số thực \(C \ne 1\).

Chọn đáp án C.

Câu 6.

Ta có: \(\int {{{\left( {{e^3}} \right)}^{\cos x}}\sin x\,dx}  \)

\(=  - \dfrac{1}{3}\int {{e^{3\cos x}}\,d\left( {3\cos x} \right)}  \)

\(=  - \dfrac{1}{3}{e^{3\cos x}} + C\)

Chọn đáp án C.

Câu 7.

Ta có: \(\int {\dfrac{{2{x^2} - 7x + 7}}{{x - 2}}\,dx} \)

\(= \int {\dfrac{{2\left( {{x^2} - 4x + 4} \right) + x - 2 + 1}}{{x - 2}}} \,dx \)

\(= \int {\left( {2\left( {x - 2} \right) + 1 + \dfrac{1}{{x - 2}}} \right)} \,dx\)

\( = \left( {{x^2} - 3x + \ln \left| {x - 2} \right|} \right) + C\)

Chọn đáp án B.

Câu 8.

+ Ta có: \(\int {\dfrac{{dx}}{x} = \ln \left| x \right|}  + C \to \) Đáp án B sai.

+ Ta có \(\int {\dfrac{{dx}}{{{x^\alpha }}} = \dfrac{{{x^{1 - \alpha }}}}{{1 - \alpha }} + C\,,\forall \alpha  \in R} ,\alpha  \ne 1 \to \) Đáp án A sai.

+ Ta có: \(\int \dfrac{{dx}}{{\left( {x + a} \right)\left( {x + b} \right)}}\)

\(= \dfrac{1}{{a - b}}\int {\left( {\dfrac{1}{{x + b}} - \dfrac{1}{{x + a}}} \right)\,dx}\)

\(=  \dfrac{1}{{a - b}}\ln \left| {\dfrac{{x + b}}{{x + a}}} \right| + C \)

Chọn đáp án C.

Câu 9.

Ta có: \(\int {{3^{{x^2}}}x\,dx}  = \int {{3^{{x^2}}}} d\left( {\dfrac{{{x^2}}}{2}} \right) \)\(\,= \dfrac{1}{2}\int {{3^{{x^2}}}} d\left( {{x^2}} \right) = \dfrac{1}{2}\dfrac{{{3^{{x^2}}}}}{{\ln 3}} + C\)   

Chọn đáp án C.

Câu 10.

Ta có: \(I = \int\limits_0^{\dfrac{\pi }{2}} {x.\cos \left( {a - x} \right)\,dx}  \)\(\,=  - \int\limits_0^{\dfrac{\pi }{2}} {x\,d\left( {\sin \left( {a - x} \right)} \right)} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = d\left( {\sin \left( {a - x} \right)} \right)\end{array} \right. \)

\(\Rightarrow \left\{ \begin{array}{l}du = dx\\v = \sin \left( {a - x} \right)\end{array} \right.\)

Khi đó ta có:

\(I =  - \left( {x\sin \left( {a - x} \right)} \right)\left| {_{_{\scriptstyle\atop{\scriptstyle\atop\scriptstyle0}}}^{\dfrac{\pi }{2}}} \right. + \int\limits_0^{\dfrac{\pi }{2}} {\sin \left( {a - x} \right)} \,dx\)

\(=  - \dfrac{\pi }{2}\sin \left( {a - \dfrac{\pi }{2}} \right) + \int\limits_0^{\dfrac{\pi }{2}} d \left( {\cos \left( {a - x} \right)} \right)\)

\( =  - \dfrac{\pi }{2}\sin \left( {a - \dfrac{\pi }{2}} \right) + \cos \left( {a - x} \right)\left| \begin{array}{l}^{\dfrac{\pi }{2}}\\_0\end{array} \right. \)

\(=  - \dfrac{\pi }{2}\sin \left( {a - \dfrac{\pi }{2}} \right) + \cos \left( {a - \dfrac{\pi }{2}} \right) - \cos a\)

\( = \dfrac{\pi }{2}\cos a + \sin a - \cos a \)

\(= \left( {\dfrac{\pi }{2} - 1} \right)\,\cos a + \sin a\)

Chọn đáp án C.

Câu 11.

Diện tích hình phẳng được xác định bởi công thức

\(S = \int\limits_{ - 2}^{ - 1} {\left| {{x^3}} \right|} \,dx = \left| {\dfrac{{{x^4}}}{4}} \right|\left| \begin{array}{l}^{ - 1}\\_{ - 2}^{}\end{array} \right.\)\(\, = \left| {\dfrac{1}{4} - 4} \right| = \dfrac{{15}}{4}.\)

Chọn đáp án C.

Câu 12.

Ta có: \(\int {\dfrac{1}{{{{\sin }^2}x}}\,dx}  = \left( { - \cot x} \right) + C\)

Theo giả thiết ta có: \(F\left( {\dfrac{\pi }{6}} \right) = 0 \)

\(\Leftrightarrow  - \cot \left( {\dfrac{\pi }{6}} \right) + C = 0 \Leftrightarrow C = \sqrt 3 \)

Chọn đáp án B.

Câu 13.

Ta có: \(\int {f(x)\,dx = F(x) + C} \)\( \Rightarrow \)\(\int {f(ax + b) = \dfrac{1}{a}F(ax + b) + C} \)

Chọn đáp án A.

Câu 14.

Đặt \(t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1 \Rightarrow dx = 2tdt\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \to t = 1\\x = 3 \to t = 2\end{array} \right.\)

Khi đó ta có: \(I = \int\limits_1^2 {2t.\dfrac{{{t^2} - 1}}{{1 + t}}} \,dt = \int\limits_1^2 {2t\left( {t - 1} \right)\,dt} \)

\( \Rightarrow f\left( t \right) = 2{t^2} - 2t\)

Chọn đáp án B.

Câu 15.

Ta có: \(\int\limits_1^5 {f\left( x \right)} \,dx \)\(\,= \int\limits_1^3 {f\left( x \right)} \,dx + \int\limits_3^5 {f\left( x \right)} \,dx = 2 \)

\(\Rightarrow \int\limits_3^5 {f\left( x \right)} \,dx = 2 - \int\limits_1^3 {f\left( x \right)} \,dx\)\(\, = 2 - 7 =  - 5\)

Chọn đáp án B.

Câu 16.

Đặt \(\left\{ \begin{array}{l}u = f(x)\\dv = g'(x)\,dx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = f'\left( x \right)\\v = g\left( x \right)\end{array} \right.\)

Khi đó \(I = \int\limits_a^b {f(x).g'(x)\,dx} \)\(\, = \left( {f\left( x \right).g\left( x \right)} \right)\left| \begin{array}{l}^b\\_a\end{array} \right. - \int\limits_a^b {g\left( x \right)} f'\left( x \right)\,dx\)

Chọn đáp án A.

Câu 17.

Ta có: \(\int\limits_1^4 {f(t)\,dt = \,\,\int\limits_1^2 {f(t)\,dt + \int\limits_2^4 {f\left( t \right)\,dt} } }  \)\(\,= 3 \)

\(\Rightarrow \int\limits_2^4 {f\left( t \right)\,dt}  = 3 - \int\limits_1^2 {f(t)\,dt} \)\(\, = 3 - 3 = 0\)

Chọn đáp án D.

Câu 18.

Ta có: \(\int {{2^{2x}}{3^x}{7^x}} dx = \int {{{84}^x}} dx = \int f(x)\,dx \)\(\,= \dfrac{{{{84}^x}}}{{\ln 84}} + C\)

Chọn đáp án A.

Câu 19.

Phương trình hoành độ giao điểm \(\sqrt x  - x = 0 \Leftrightarrow {x^2} - x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Khi đó diện tích hình phẳng được xác định bởi công thức

\(S = \int\limits_0^1 {\left( {\sqrt x  - x} \right)\,dx} \)\(\, = \left( {\dfrac{2}{3}{x^{\dfrac{3}{2}}} - \dfrac{{{x^2}}}{2}} \right)\left| \begin{array}{l}^1\\_0\end{array} \right. = \dfrac{1}{6}\)

Chọn đáp án B.

Câu 20.

Ta có: \(\int {\dfrac{{{{\left( {{x^2} - 1} \right)}^2}}}{{{x^2}}}} \,dx = \int {\dfrac{{{x^4} - 2{x^2} + 1}}{{{x^2}}}} \,dx\)

\(= \int {\left( {{x^2} - 2 + \dfrac{1}{{{x^2}}}} \right)} \,dx \)

\(= \dfrac{{{x^3}}}{3} - 2x - \dfrac{1}{x} + C\)

Chọn đáp án A.

Câu 21.

Ta có: \(\int {\dfrac{{\cos 2x}}{{{{\cos }^2}x{{\sin }^2}x}}} \,dx\)

\(= \int {\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x{{\sin }^2}x}}} \,dx\)

\(= \int {\left( {\dfrac{1}{{{{\sin }^2}x}} - \dfrac{1}{{{{\cos }^2}x}}} \right)} \,dx \)

\(=  - \cot x - \tan x + C\)

Chọn đáp án C.

Câu 22.

Ta có: \(\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {\cot x\,dx}  = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {\dfrac{{\cos x}}{{\sin x}}\,dx} \)

\(= \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {\dfrac{1}{{\sin x}}\,d\left( {\sin x} \right)}  \)

\(= \ln \left| {\sin x} \right|\left| {_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}} \right. =  - \ln \dfrac{{\sqrt 2 }}{2}.\)

Chọn đáp án C.

Câu 23.

Thể tích của khối tròn xoay được xác định bởi công thức:

\(V = \pi \int\limits_1^2 {x{e^x}dx}  = \pi {e^x}\left( {\dfrac{{{x^2}}}{2}} \right)|_1^2 \)\(\,= \pi \left( {2{e^2} - 0} \right) = 2\pi {e^2}\)

Câu 24.

Diện tích hình phẳng dưới hạn bởi các đường thẳng và đồ thị được xác định bằng công thức:

\(S = \int\limits_0^1 {\left( {1 - \dfrac{{{x^2}}}{4}} \right)} \,dx + \int\limits_0^1 {\left( {x - \dfrac{{{x^2}}}{4}} \right)} \,dx\)

\(= \left( {x - \dfrac{{{x^3}}}{{12}}} \right)\left| \begin{array}{l}^1\\_0\end{array} \right. + \left( {\dfrac{{{x^2}}}{2} - \dfrac{{{x^3}}}{{12}}} \right)\left| \begin{array}{l}^1\\_0\end{array} \right.\)

\( = 1 - \dfrac{1}{{12}} + \dfrac{1}{2} - \dfrac{1}{{12}} = \dfrac{4}{3}\)

Khi đó \(b - a = 3 - 4 =  - 1.\)

Chọn đáp án D.

Câu 25.

Đặt \(\left\{ \begin{array}{l}u = 2x + 1\\dv = {e^x}\,dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2dx\\v = {e^x}\end{array} \right.\)

Khi đó

\(I = \int\limits_0^1 {\left( {2x + 1} \right){e^x}\,dx}  \)

\(= \left( {\left( {2x + 1} \right){e^x}} \right)\left| \begin{array}{l}^1\\_0\end{array} \right. - 2\int\limits_0^1 {{e^x}} dx \)

\(= 3e - 1 - 2\int\limits_0^1 {{e^x}} dx\)

Chọn đáp án B

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"