Đề kiểm tra 45 phút (1 tiết) - Đề số 3 – Chương IV - Giải tích 12

2024-09-14 19:43:10

Đề bài

Câu 1. Cho số phức z thỏa mãn \(\overline z  = \left( {1 - 3i} \right)\left( { - 2 + i} \right) = 2i\). Tính \(|z|\).

A. \(|z| = 2\).  

B. \(|z| = 5\sqrt 2 \).

C. \(|z| = \sqrt {82} \).  

D. \(|z| = 4\sqrt 5 \).

Câu 2. Trong mặt phẳng phức, tìm tập hợp điểm M biểu diễn số phức z thỏa mãn \(|z + 1 - i| \le 3\).

A. Hình tròn tâm I(1 ; - 1) , bán kính R = 3.

B. Đường tròn tâm I(-1 ; 1), bán kính R = 9.

C. Hình tròn tâm I(- 1; 1), bán kính R = 3.

D. Đường tròn tâm I(-1 ; 1), bán kính R = 9.

Câu 3. Thu gọn số phức \(z = \dfrac{{3 + 2i}}{{1 - i}} + \dfrac{{1 - i}}{{3 + 2i}}\), ta được:

A. \(z = \dfrac{{15}}{{26}} + \dfrac{{55}}{{26}}i\).  

B. \(z = \dfrac{{23}}{{26}} + \dfrac{{63}}{{26}}i\).

C. \(z = \dfrac{2}{{13}} + \dfrac{6}{{13}}i\).   

D. \(z = \dfrac{{21}}{{26}} + \dfrac{{61}}{{26}}i\).

Câu 4. Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn cho số phức z thỏa mãn \({z^2}\) là một số ảo là :

A. Trục hoành.   

B. Trục tung.

C. Hai đường thẳng \(y =  \pm x\)   

D. Đường tròn \({x^2} + {y^2} = 1\).

Câu 5. Trong mặt phẳng phức, gọi A, B , C lần lượt là các điểm biểu diễn của các số phức \({z_1} =  - 1 + 3i\,,\,\,{z_2} = 1 + 5i\,,\,\,{z_3} = 4 + i\). Số phức z có điểm biểu diễn là điểm D sao cho tứ giác ABCD là hình bình hành là:

A. \(z = 6 + 3i\).   

B. \(z = 2 - i\).

C. \(z = 2 + i\).                  

D. \(z = 6 - 3i\).

Câu 6. Tìm số phức z thỏa mãn \(\left( {3 - 2i} \right)z + \left( {4 + 5i} \right) = 7 + 3i\).

A. \(z =  - i\).               

B. \(z =  - 1\).

C. \(z = i\)                      

D. \(z = 1\).

Câu 7. Cho hai số phức \(z = a + bi\,,\,\,z' = a' + b'i\). Điều kiện để \(zz'\) là một số thực là :

A. \(ab' + a'b = 0\). 

B. \(aa' + bb' = 0\).

C. \(aa' - bb' = 0\).       

D. \(ab' - a'b = 0\).

Câu 8. Số phức liên hợp của số phức \(z =  - \dfrac{1}{2} + \dfrac{3}{2}i\) là:

A. \(\overline z  = \dfrac{3}{2} - \dfrac{1}{2}i\).    

B. \(\overline z  =  - \dfrac{1}{2} - \dfrac{3}{2}i\).

C. \(\overline z  = \dfrac{1}{2} - \dfrac{3}{2}i\).   

D. \(\overline z  = \dfrac{1}{2} + \dfrac{3}{2}i\).

Câu 9. Cho số phức z = 3 + 4i. Giá trị của \(S = 2|z| - 1\) bằng bao nhiêu ?

A. S = 10.  

B. S = 9.

C. S = 11.         

D. S = 5.

Câu 10. Tìm các số thực x, y  thỏa mãn \(\left( {x + 2y} \right) + \left( {2x - 2y} \right)i = 7 - 4i\).

A. \(x =  - \dfrac{{11}}{3}\,,\,\,y = \dfrac{1}{3}\).  

B. \(x =  - 1\,,\,y =  - 3\).

 C. x = 1, y = 3.         

D. \(x =  - \dfrac{{11}}{3}\,,\,\,y =  - \dfrac{1}{3}\).

Câu 11. Gọi M, N  lần lượt là các điểm biểu diễn số phức \(z = a + bi,\,\,z' = a' + b'i\). Chọn câu trả lời đúng.

A. \(M(a;a')\).                  B. \(N(b;b')\).

C.  M(a ; b).                       D. \(N(a';b')\).

 Câu 12. Phần thực và phần ảo của số phức \(z =  - \dfrac{{1 + i}}{{1 - i}}\) là:

A. 0 và 1.                        B. 0 và i.

C. 0 và -1.                        D. 0 và – i.

Câu 13. Nghiệm của phương trình \(3{z^2} - 4z + 2 = 0\) là:

A. \({z_1} = \dfrac{{ - 2 - i\sqrt 2 }}{3}\,,\,\,{z_2} = \dfrac{{ - 2 + i\sqrt 2 }}{3}\).

B. \({z_1} = \dfrac{{ - 2 - i\sqrt 2 }}{6}\,,\,\,{z_2} = \dfrac{{ - 2 + i\sqrt 2 }}{6}\)

C. \({z_1} = \dfrac{{2 - i\sqrt 2 }}{6}\,,\,\,{z_2} = \dfrac{{2 + i\sqrt 2 }}{6}\).   

D. \({z_1} = \dfrac{{2 - i\sqrt 2 }}{3}\,,\,\,{z_2} = \dfrac{{2 + i\sqrt 2 }}{3}\).

 Câu 14.Với hai số phức bất kì \({z_1},\,{z_2}\), khẳng định nào sau đây đúng ?

A. \(|{z_1} + {z_2}|\, \le \,|{z_1}| + |{z_2}|\).  

B. \(|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}|\).

C. \(|{z_1} + {z_2}|\, \ge \,|{z_1}| + |{z_2}|\).  

D. \(|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}| + |{z_1} - {z_2}|\).

Câu 15. Thực hiện phép tính \(A = \dfrac{{2 + 3i}}{{1 + i}} + \dfrac{{3 - 4i}}{{1 - i}} + i\left( {4 + 9i} \right)\). Ta có:

A. A = 3 + 4i.     

B. A = - 3 + 4i.

C. A = 3 - 4i          

D. A =  - 3  – 4i.

Câu 16. Cho số phức z có \(|z| = 2\) thì số phức \(w = z + 3i\) có mô đun nhỏ nhất và lớn nhất lần lượt là:

A. 2 và 5.                           B. 1 và 6 .

C. 2 và 6.                           D. 1 và 5.

Câu 17. Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z + 3 - 3i| = 5\) là:

A. Đường tròn tâm I(-3 ; 3) bán kính R = 5.

B. Đường tròn tâm I(-3 ; -3) bán kính R = 5.

C. Đường tròn tâm I(3 ; 3) bán kính R = 5.

D. Đường tròn tâm I(3 ; -3) bán kính R = 5.

Câu 18. Gọi \(\varphi \) là một acgumen của z, chọn mệnh đề đúng .

A. \(\varphi  + \pi \) là một acgumen của z.

B. \(\varphi  - \pi \) là một acgumn của z.

C. \(\varphi  - 2\pi \) là một acgumen của z.  

D. \(\varphi  + 3\pi \) là một acgumen của z.

Câu 19. Số phức \(z = {\left( {1 - i} \right)^3}\) bằng :

A. 1 + i.                        

B. – 2 – 2i.

C. – 2 + 2i.        

D. 4 + 4i.

Câu 20. Nghịch đảo của số phức \(z = 4 + 3i\)là

A. 4 – 3i .  

B. \(\dfrac{1}{4} + \dfrac{1}{3}i\).

C. \( - \dfrac{4}{5} + \dfrac{3}{5}i\).          

C. \(\dfrac{4}{{25}} - \dfrac{3}{{25}}i\).

Câu 21. Cho A và B là các điểm biểu diễn các số phức \({z_1} = 1 + 2i\,,\,\,{z_2} = 1 - 2i\). Diện tích của tam giác OAB bằng:

A. 1                               B. 2     

C. 4                               D. \(\dfrac{5}{2}\).

Câu 22. Cho số phức z có dạng lượng giác \(z = 4\left( {\cos \left( { - \pi } \right) + i\sin \left( { - \pi } \right)} \right)\). Dạng đại số của z là :

A. z = - 4.                      B. z = - i.

C. z = 4i.                        D. z = - 4i.

Câu 23. Cho các số phức \({z_1} = 1 - 4i\,,\,\,{z_2} =  - 1 - 3i\). Hãy tính \(|{z_1} + {z_2}|\).

A. 7                            B. 10 

C. 12                           D. 9

Câu 24. Cho số phức \(z = a + bi\). Tìm mệnh đề đúng.

A. \(z - \overline z  = 2a\).               

B. \(z + \overline z  = 2a\).

C. \(|{z^2}| = |z{|^2}\).                

D. \(z.\overline z  = {a^2} - {b^2}\).

Câu 25. Với hai số phức bất kì \({z_1},\,{z_2}\), khẳng định nào sau đây đúng ?

A. \(|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}|\). 

B. \(|{z_1} + {z_2}|\, \ge \,|{z_1}| + |{z_2}|\).

C. \(|{z_1} - {z_2}|\,\, \le \,|{z_1}| + |{z_2}|\).        

D. \(|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}| + |{z_1} - {z_2}|\).

Lời giải chi tiết

1

2

3

4

5

C

C

A

C

B

6

7

8

9

10

D

A

B

B

C

11

12

13

14

15

C

C

D

A

B

16

17

18

19

20

D

A

C

B

C

21

22

23

24

25

B

A

A

B

C

 Lời giải chi tiết 

Câu 1: C

Đặt \(z = x + yi\)

\(\begin{array}{l}x - yi - \left( {1 - 3i} \right)( - 2 + i) = 2i\\ \Leftrightarrow x - yi - ( - 2 + 7i - 3{i^2}) = 2i\\ \Leftrightarrow x - yi - 1 - 7i = 2i\\ \Rightarrow \left\{ \begin{array}{l}x - 1 = 0\\y + 7 =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y =  - 9\end{array} \right. \\\Rightarrow z = 1 - 9i\\ \Rightarrow \left| z \right| = \sqrt {1 + {{( - 9)}^2}}  = \sqrt {82} \end{array}\)

Câu 2: C

Đặt \(z = x + yi\)

\(\eqalign{&\left| {z + 1 - i} \right| \le 3\cr& \Rightarrow \left| {x + yi + 1 - i} \right| \le 3\cr& \Leftrightarrow \left| {\left( {x + 1} \right) + \left( {y - 1} \right)} \right| \le 3\cr& \Rightarrow \sqrt {{{\left( {x + 1} \right)}^2} + {{\left( {y - 1} \right)}^2}}  \le 3\cr}\)

Tập hợp biểu diễn số phức z à hình tròn tâm I( -1,1), bán kính \(r=3\)

Câu  3: A

\(\eqalign{z& = \dfrac{{3 + 2i}}{{1 - i}} + \dfrac{{1 - i}}{{3 + 2i}}\cr& = \dfrac{{{{\left( {3 + 2i} \right)}^2} + {{\left( {1 - i} \right)}^2}}}{{\left( {1 - i} \right)\left( {3 + 2i} \right)}}\cr&= \dfrac{{9 + 4{i^2} + 12i + 1 + {i^2} - 2i}}{{3 - 2{i^2} - i}}\cr& = \dfrac{{5 + 10i}}{{5 - i}}\cr& = \dfrac{{5(1 + 2i)(5 + i)}}{{25 - {i^2}}}\cr& = \dfrac{{5(5 + 2{i^2} + 11i)}}{{26}}\cr&= \dfrac{{5(3 + 11i)}}{{26}} = \dfrac{{15}}{{26}} + \dfrac{{55}}{{26}}i\cr}\)

Câu 4: C

Đặt z = x +yi

Có \({z^2} = {(x + yi)^2} = {x^2} - {y^2} + 2xyi\)

Có z là 1 số thuần ảo nên \({x^2} - {y^2} = 0 \Leftrightarrow {x^2} = {y^2} \Leftrightarrow \left[ \begin{array}{l}y = x\\y =  - x\end{array} \right.\)

Điểm biểu diễn số phức x là đường thẳng \(y = x,{\rm{ }}y =  - x\)

Câu 5: B

Câu 6: D

\(\begin{array}{l}(3 - 2i)z + 4 + 5i = 7 + 3i\\ \Leftrightarrow (3 - 2i)z = 3 - 2i\\ \Leftrightarrow z = 1\end{array}\)

Câu 7: A

\(\begin{array}{l}z = a + bi,\,\,z' = a' + bi'\\z.z = (a + i)(a' + b'i)\\\,\,\,\,\,\,\,\, = a.a' - b.b' + (a'b + ab')i\end{array}\)

Để z.z là số thực thì a'b + ab' = 0

Câu  8: B

Câu 9: B

\(\begin{array}{l}z = 3 + 4i \Rightarrow \left| z \right| = \sqrt {{3^2} + {4^2}}  = 5\\ \Rightarrow S = 2\left| z \right| - 1 = 2.5 - 1 = 9\end{array}\)

Câu 10: C

\(\begin{array}{l}(x + 2y) + (2x - 2y)i = 7 - 4i\\ \Rightarrow \left\{ \begin{array}{l}x + 2y = 7\\2x - 2y =  - 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x + 2y = 7\\x - y =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right.\end{array}\)

Câu 11: C

Câu 12: C

\(z =  - \dfrac{{1 + i}}{{1 - i}} =  - \dfrac{{{{(1 + i)}^2}}}{{1 - {i^2}}} =  - i\)

phần thực: 0   , phần ảo: -1

Câu 13: D

\(\begin{array}{l}3{z^2} - 4z + 2 = 0\\\Delta ' = {(b')^2} - ac = 4 - 3.2 =  - 2 = 2{i^2}\end{array}\)

\(\Delta \) có hai căn bậc hai là \(i\sqrt 2 \)và\( - i\sqrt 2 \)

Pt có nghiệm  là \({x_1} = \dfrac{2}{3} + \dfrac{{\sqrt 2 }}{3}i,{x_2} = \dfrac{2}{3} - \dfrac{{\sqrt 2 }}{3}i\)

Câu 14: A

Câu 15: B

\(\eqalign{A& = \dfrac{{2 + 3i}}{{1 + i}} + \dfrac{{3 - 4i}}{{1 - i}} + i(4 + 9i)\cr& = \dfrac{{(2 + 3i)(1 - i) + (3 - 4i)(1 + i)}}{{1 - {i^2}}} + i(4 + 9i)\cr& = \dfrac{{2 - 3{i^2} + i + 3 - 4{i^2} - i}}{2} + 4i - 9\cr& = 6 + 4i - 9 =  - 3 + 4i\cr}\)

Câu  16: D

\(\begin{array}{l}\left| {\rm{w}} \right| = \left| {z + 3i} \right|\\ \Rightarrow \left| {\left| z \right| - \left| {3i} \right|} \right| \le \left| {z + 3i} \right| \le \left| z \right| + \left| {3i} \right|\\ \Rightarrow \left| {2 - 3} \right| \le \left| {z + 3i} \right| \le 2 + 3\\ \Rightarrow 1 \le \left| {z + 3i} \right| \le 5\\ \Rightarrow \max \left| {\rm{w}} \right| = 5,\min \left| {\rm{w}} \right| = 1\end{array}\)

Câu 17: A

Đặt z = x +yi

\(\begin{array}{l}\left| {z + 3 - 3i} \right| = 5\\ \Rightarrow \left| {x + yi + 3 - 3i} \right| = 5\\ \Rightarrow \left| {\left( {x + 3} \right) + \left( {y - 3} \right)i} \right| = 5\\ \Rightarrow \sqrt {{{\left( {x + 3} \right)}^2} + {{\left( {y - 3} \right)}^2}}  = 5\end{array}\)

ð  Tập hợp biểu diễn số phức z là đường tròn tâm I(-3,3), bán kính là 5

Câu 18: C

Câu 19: B

\(z = {(1 - i)^3} \\\;\;= {(1 - i)^2}.(1 - i) \\\;\;= (1 - 2i + {i^2})(1 - i)\\\;\; =  - 2i(1 - i) = 2 - 2i\)

Câu 20: C

\(z = 4 +3i\)

Nghịch đảo của số phức z là: \(\dfrac{1}{z} = \dfrac{1}{{4 + 3i}} = \dfrac{{4 - 3i}}{{16 - 9{i^2}}}\)\(\; = \dfrac{{4 - 3i}}{{25}} = \dfrac{4}{{25}} - \dfrac{3}{{25}}i\)

Câu 21: B

Có  O( 0, 0); A( 1, 2); B( 1, -2)

\(OA = OB = \sqrt 5  \Rightarrow \Delta OAB\) cân tại O

Gọi H là trung điểm của AB

\( \Rightarrow H(\left( {1,0} \right) \Rightarrow OH = 1\)

Mặt khác, AB=4 nên ta có \({S_{OAB}} = \dfrac{1}{2}.1.4 = 2\)

Câu 22: A

Câu 23: A

\(\begin{array}{l}{z_1} + {z_2} = 1 - 4i - 1 - 3i =  - 7i\\ \Rightarrow \left| {{z_1} + {z_2}} \right| = \sqrt {{{( - 7)}^2}}  = 7\end{array}\)

Câu 24: B

Câu 25: C

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"