Đề kiểm tra 45 phút (1 tiết) - Đề số 4 – Chương IV - Giải tích 12

2024-09-14 19:43:10

Đề bài

Câu 1. Cho hai số phức \({z_1} = 9 - i,\,\,\,{z_2} =  - 3 + 2i\). Tính giá trị của \(\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right|\) bằng bao nhiêu /

A. \(\dfrac{{2\sqrt {154} }}{{13}}\).               B. \(\dfrac{{616}}{{169}}\).

C. \(\dfrac{{82}}{{13}}\).                       D. \(\sqrt {\dfrac{{82}}{{13}}} \).

Câu 2. Cho hai số phức \({z_1} = a + bi,\,\,{z_2} = c + di\)z. Tìm phần thực của số phức \({z_1}.{z_2}\).

A. Phần thực của số phức \({z_1}.{z_2}\) là ac + bd.

B. Phần thực của số phức \({z_1}.{z_2}\) là  ac – bd .

C. Phần thực của số phức \({z_1}.{z_2}\) là ad + bc.

D. Phần thực của số phức \({z_1}.{z_2}\) là ad – bc

Câu 3. Cho số phức \(z =  - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\). Khi đó số phức \({\left( {\overline z } \right)^2}\) bằng ;

A. \( - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\).        

B. \(\sqrt 3  - i\).

C. \( - \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}i\).      

D. \(1 + \sqrt 3 i\).

Câu 4.Giả sử A, B theo thứ tự là điểm biểu diễn của các số phức \({z_1} = {a_1} + {b_1}i\,,\,\,{z_2} = {a_2} + {b_2}i\). Khi đó độ dài của véc tơ \(\overrightarrow {AB} \) bằng ;

A. \(|{z_1} + {z_2}|\).      

B. \(|{z_1}| + |{z_2}|\).

C. \(|{z_1}| - |{z_2}|\).               

D. \(|{z_1} - {z_2}|\).

Câu 5. Mô đun của số phức z thỏa mãn \(\dfrac{{2 + i}}{{1 - i}}z = \dfrac{{ - 1 + 3i}}{{2 + i}}\) là:

A. \(\sqrt 5 \)                             B. \(\dfrac{{\sqrt 5 }}{5}\)

C. \(\dfrac{{2\sqrt 5 }}{5}\)                           D. \(\dfrac{{3\sqrt 5 }}{5}\).

Câu 6. Tính số phức sau : \(z = {\left( {1 + i} \right)^{15}}\).

A. \(z =  - 128 + 128i\).         

B. \(z = 128 - 128i\).

C. \(z = 128 + 128i\).         

D. \(z =  - 128 - 128i\).

Câu 7. Cho số phức z = a + bi. Khi đó số \(\dfrac{1}{2}\left( {z + \overline z } \right)\) là:

A. Một số thuần ảo. 

B. 2a.

C. i.               

D. a.

Câu 8. Cho các số phức \({z_1} = 2 - 5i\,,\,\,{z_2} =  - 2 - 3i\). Hãy tính \(|{z_1} - {z_2}|\).

A. \(2\sqrt 5 \)                       B. 20         

C. 12                           D. \(2\sqrt 3 \).

Câu 9. Cho số phức z thỏa mãn \(\left( {3 - 2i} \right)z = 4 + 2i\). Tìm số phức liên hợp của z.

A. \(\overline z  = 4 - 2i\). 

B. \(\overline z  = \dfrac{8}{{13}} + \dfrac{{14}}{{13}}i\).

C. \(\overline z  = 3 + 2i\).    

D. \(\overline z  = \dfrac{8}{{13}} - \dfrac{{14}}{{13}}i\).

Câu 10. Giải phương trình \({z^2} - 6z + 11 = 0\), ta có nghiệm là :

A. \(z = 3 + \sqrt 2 i\).     

B. \(z = 3 - \sqrt 2 i\).

C. \(\left[ \begin{array}{l}z = 3 + \sqrt 2 i\\z = 3 - \sqrt 2 i\end{array} \right.\).          

D. Một kết quả khác .

Câu 11. Cho hai số phức \(z = a + bi\,,\,\,z' = a' + b'i\). Chọn công thức đúng .

A. \(z + z' = \left( {a + b} \right) + \left( {a' + b'} \right)i\).

B. \(z - z' = \left( {a + a'} \right) - \left( {b + b'} \right)i\).

C. \(z.z' = \left( {aa' - bb'} \right) + \left( {ab' + a'b} \right)i\). 

D. \(z.z' = \left( {aa' + bb'} \right) - \left( {ab' + a'b} \right)i\).

Câu 12. Cho z = 1 + 2i. Phần thực và phần ảo của số phức \(w = 2z + \overline z \) là:

A. 3 và 2.   

B. 3 và 2i.

C. 1 và 6.                

D. 1 và 6i.

Câu 13. Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 1 + i\\3x + iy = 2 - 3i\end{array} \right.\) là:

A. \(\left\{ \begin{array}{l}x = 1 + i\\y = i\end{array} \right.\).     

B. \(\left\{ \begin{array}{l}x = i\\y = 1 + i\end{array} \right.\).

C. \(\left\{ \begin{array}{l}x = 1 - i\\y = i\end{array} \right.\).       

D. \(\left\{ \begin{array}{l}x = i\\y = 1 - i\end{array} \right.\).

Câu 14. Tìm số phức có phần thực bằng 12 và mô đun bằng 13.

A. \(5 \pm 12i\).          

B. 12 + 5i.

C. \(12 \pm 5i\).                      

D. \(12 \pm i\).

Câu 15. Phương trình \({z^2} - 2z + 3 = 0\) có các nghiệm là:

A. \(2 \pm 2\sqrt 2 i\).      

B. \( - 2 \pm 2\sqrt 2 i\).

C. \( - 1 \pm 2\sqrt 2 i\).       

D. \(1 \pm \sqrt 2 i\).

Câu 16. Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|\overline z  + 3 - 2i| = 4\) là:

A. Đường tròn tâm I(3 ; 2) có bán kính R = 4.

B. Đường tròn tâm I(3 ; -2) có bán kính R= 4.

C. Đường tròn tâm I(-3 ; 2) có bán kính R = 4.

D. Đường tròn tâm I(- 3; -2) có bán kính R = 4.

Câu 17. Hai điểm biểu diễn hai số phức liên hợp \(z = 2 + 2i,\,\,\overline z  = 2 - 2i\) đối xứng với nhau qua :

A. Trục tung.     

B. Trục hoành.

C. Gốc tọa độ.    

D. Điểm A(2; -2).

Câu 18. Cho số phức \(z = r\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\). Chọn 1 acgumen của z:

A. \( - \dfrac{\pi }{2}\)                           B. \( - \dfrac{{3\pi }}{2}\)   

C. \(\dfrac{{3\pi }}{2}\)                             D. \(\pi \).

Câu 19. Mô đun của tổng hai số phức \({z_1} = 3 - 4i\,,\,\,{z_2} = 4 + 3i\):

A. \(5\sqrt 2 \)                          B. 10

C. 8                                D. 50.

Câu 20. Cho số phức \(z =  - r\left( {\cos \varphi  + i\sin \varphi } \right)\). Tìm một acgumen của z ?

A. \( - \varphi \).    

B. \(\varphi  + 2\pi \).

C. \(\varphi  - 2\pi \).     

D. \(\varphi  + \pi \).

Câu 21. Tính \(z = \dfrac{{5 + 5i}}{{3 - 4i}} + \dfrac{{20}}{{4 + 3i}}\).

A. z = 3 –  i.   

B. z = 3 + i.

C. z = - 3 – i.   

D. z = - 3 + i.

Câu 22.Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z + 1 + i|\, \le 2\) là;

A. Đường tròn tâm I(1 ; 1) bán kính R = 2.

B. Hình tròn tâm I(1; 1) bán kính R = 2.

C. Đường tròn tâm I(- 1 ; - 1) bán kính R = 2.

D. Hình tròn tâm I(- 1 ; - 1) bán kính R = 2.

Câu 23. Dạng lượng giác của số phức z = i – 1 là:

A. \(z = \sqrt 2 \left( {\cos \dfrac{{3\pi }}{4} - i\sin \dfrac{{3\pi }}{4}} \right)\).  

B. \(z = 2\left( {\cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}} \right)\).

C. \(z = \sqrt 2 \left( {\cos \dfrac{{ - \pi }}{4} + i\sin \dfrac{{ - \pi }}{4}} \right)\). 

D. \(z = \sqrt 2 \left( {\cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}} \right)\).

Câu 24. Trong mặt phẳng phức, các điểm A, B lần lượt là điểm biểu diễn của \({z_1} = 2 - 4i\,,\,\,{z_2} = 4 + 5i\). Trung điểm của AB có tọa độ là:

A. \(A\left( {3;\dfrac{3}{2}} \right)\).    

B. \(A\left( {3;1} \right)\).

C. \(A\left( {3;\dfrac{1}{2}} \right)\).  

D. \(A\left( {6;1} \right)\).

Câu 25. Cho số phức z thỏa mãn \(\left( {3 + 2i} \right)z + {\left( {2 - i} \right)^2} = 4 + i\). Mô đun của số phức \(w = \left( {z + 1} \right)\overline z \) là:

A. 2                             B. 4    

C. 10                            D. \(\sqrt {10} \).

Lời giải chi tiết

1

2

3

4

5

D

B

A

D

C

6

7

8

9

10

B

D

A

D

C

11

12

13

14

15

C

A

C

C

D

16

17

18

19

20

A

B

B

A

D

21

22

23

24

25

A

D

D

C

D

 Lời giải chi tiết 

Câu 1: D

\(\begin{array}{l}{z_1} = 9 - i;{z_2} =  - 3 + 2i\\\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{\left( {9 - i} \right)\left( { - 3 - 2i} \right)}}{{9 - 4{i^2}}}\\\,\,\,\,\,\,\, = \dfrac{{ - 27 + 2{i^2} - 15i}}{{13}} =  - \dfrac{{29}}{{13}} - \dfrac{{15}}{{13}}i\\ \Rightarrow \left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \sqrt {{{\left( { - \dfrac{{29}}{{13}}} \right)}^2} + {{\left( { - \dfrac{{15}}{{13}}} \right)}^2}}\\\;\;\;\;\;\;\;\;\;\;\;\;\,  = \sqrt {\dfrac{{82}}{{13}}} \end{array}\)

Câu 2: B

Câu 3: A

\(\begin{array}{l}z =  - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\\ \Rightarrow {\left( {\overline z } \right)^2} = {\left( { - \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}i} \right)^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{{{\left( {1 + \sqrt 3 i} \right)}^2}}}{4}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{ - 2 + 2\sqrt 3 i}}{4}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, =  - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\end{array}\)

Câu 4: D

Câu 5 C

\(\begin{array}{l}\dfrac{{2 + i}}{{1 - i}}z = \dfrac{{ - 1 + 3i}}{{2 + i}}\\ \Leftrightarrow z = \dfrac{{\left( { - 1 + 3i} \right)\left( {1 - i} \right)}}{{{{(2 + i)}^2}}}\\ \Leftrightarrow z = \dfrac{{2 + 4i}}{{3 + 4i}}\\ \Leftrightarrow z = \dfrac{{\left( {2 + 4i} \right)\left( {3 - 4i} \right)}}{{9 - 16{i^2}}}\\ \Leftrightarrow z = \dfrac{{6 - 16{i^2} + 4i}}{{25}}\\ \Leftrightarrow z = \dfrac{{22}}{{25}} + \dfrac{4}{{25}}i\\ \Rightarrow \left| z \right| = \dfrac{{2\sqrt 5 }}{5}\end{array}\)

Câu 6: B

\(\begin{array}{l}z = {(1 + i)^{15}} = {\left( {1 + i} \right)^{14}}(1 + i)\\\,\,\,\, = {({(1 +  + i)^2})^7}\left( {1 + i} \right) = {2^7}{i^7}\left( {1 + i} \right)\\\,\,\,\, =  - {2^7}i\left( {1 + i} \right) = 128 - 128i\end{array}\)

Câu 7: D

Câu 8: A

\({z_1} - {z_2} = \left( {2 - 5i} \right) - ( - 2 - 3i)\)\(\, = 4 - 2i\)

\( \Rightarrow \left| {{z_1} - {z_2}} \right| = 2\sqrt 5\)

Câu 9: D

\(\begin{array}{l}\left( {3 - 2i} \right)z = 4 + 2i\\ \Leftrightarrow z = \dfrac{{4 + 2i}}{{3 - 2i}}\\ \Leftrightarrow z = \dfrac{{(4 + 2i)(3 + 2i)}}{{9 - 4{i^2}}}\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{12 + 4{i^2} + 14i}}{{13}}\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{8}{{13}} + \dfrac{{14}}{{13}}i\\ \Rightarrow \overline z  = \dfrac{8}{{13}} - \dfrac{{14}}{{13}}i\end{array}\)

Câu 10: C

\(\begin{array}{l}{z^2} - 6z + 11 = 0\\ \Leftrightarrow \left( {{z^2} - 6z + 9} \right) + 2 = 0\\ \Leftrightarrow {(z - 3)^2} + 2 = 0\\ \Rightarrow \left[ \begin{array}{l}z - 3 = i\sqrt 2 \\z - 3 =  - i\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = 3 + i\sqrt 2 \\z = 3 - i\sqrt 2 \end{array} \right.\end{array}\)

Câu 11: C

Câu 12: A

\({\rm{w}} = 2z + \overline z  = 2(1 + 2i) + (1 - 2i) \)\(\,= 3 + 2i\)

phần thực: 3   ,   phần  ảo: 2

Câu 13: C

\(\left\{ \begin{array}{l}x + 2y = 1 + i\\3x + iy = 2 - 3i\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 1 + i - 2y{\rm{       (1)}}\\3x + iy = 2 - 3i{\rm{   (2)}}\end{array} \right.\)

Thay (1) vào (2) ta được:

\(\begin{array}{l}3(1 + i - 2y) + iy = 2 - 3i\\ \Leftrightarrow ( - 6 + i)y =  - 1 - 6i\\ \Leftrightarrow y = \dfrac{{ - 1 - 6i}}{{ - 6 + i}}\\ \Leftrightarrow y = \dfrac{{\left( { - 1 - 6i} \right)\left( { - 6 - i} \right)}}{{36 - {i^2}}} = i\end{array}\)

Thay y = i vào (1) \( \Rightarrow x = 1 - i\)

Câu 14: C

Với phần thực bằng 12, nên số phức z có dạng \(z = 12 + bi\)

\(\begin{array}{l}\left| z \right| = 13 \Rightarrow \left| {12 + bi} \right| = 13\\ \Leftrightarrow \sqrt {{{12}^2} + {b^2}}  = 13\\ \Leftrightarrow {b^2} = 25\\ \Leftrightarrow \left[ \begin{array}{l}b = 5 \Rightarrow z = 12 + 5i\\b =  - 5 \Rightarrow z = 12 - 5i\end{array} \right.\end{array}\)

Câu 15: D

\(\begin{array}{l}{z^2} - 2z + 3 = 0\\ \Leftrightarrow \left( {{z^2} - 2z + 1} \right) + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} =  - 2\\ \Rightarrow \left[ \begin{array}{l}z - 1 = i\sqrt 2 \\z - 1 =  - i\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = 1 + i\sqrt 2 \\z = 1 - i\sqrt 2 \end{array} \right.\end{array}\)

Câu 16: A

Câu 17: B

Câu 18: B

Câu 19: A

\(\begin{array}{l}{z_1} + {z_2} = 3 - 4i + 4 + 3i = 7 - i\\ \Rightarrow \left| {{z_1} + {z_2}} \right| = 5\sqrt 2 \end{array}\)

Câu 20: D

Câu 21: A

\(\begin{array}{l}z = \dfrac{{5 + 5i}}{{3 - 4i}} + \dfrac{{20}}{{4 + 3i}}\\\,\,\,\, = \dfrac{{5\left( {1 + i} \right)\left( {3 + 4i} \right)}}{{9 - 16{i^2}}} + \dfrac{{20\left( {4 - 3i} \right)}}{{16 - 9{i^2}}}\\\,\,\,\, = \dfrac{{5(3 + 4{i^2} + 7i) + 20(4 - 3i)}}{{25}}\\\,\,\,\, = \dfrac{{5( - 1 + 7i) + 20\left( {4 - 3i} \right)}}{{25}} = 3 - i\end{array}\)

Câu 22: D

Đặt \(z= x+yi\)

\(\begin{array}{l}\left| {z + 1 + i} \right| \le 2\\ \Rightarrow \left| {x + yi + 1 + i} \right| \le 2\\ \Leftrightarrow \left| {\left( {x + 1} \right) + \left( {y + 1} \right)} \right| \le 2\\ \Leftrightarrow \sqrt {{{\left( {x + 1} \right)}^2} + {{\left( {y + 1} \right)}^2}}  \le 2\end{array}\)

Vậy  tập hợp các điểm biểu diễn số phức z là hình tròn tâm I(-1, -1), bán kính bằng 2

Câu 23: D

Câu 24: C

Câu 25: D

\(\begin{array}{l}\left( {3 + 2i} \right)z + {\left( {2 - i} \right)^2} = 4 + i\\ \Leftrightarrow \left( {3 + 2i} \right)z + (3 - 4i) = 4 + i\\ \Leftrightarrow \left( {3 + 2i} \right)z = 1 + 5i\\ \Leftrightarrow z = \dfrac{{1 + 5i}}{{3 + 2i}}\\ \Leftrightarrow z = \dfrac{{\left( {1 + 5i} \right)\left( {3 - 2i} \right)}}{{9 - 4{i^2}}}\\ \Leftrightarrow z = \dfrac{{13 + 13i}}{{13}} = 1 + i\\{\rm{w}} = (z + 1)\overline z  = (2 + i)(1 - i)\\\,\,\,\,\,\, = 2 - {i^2} - i = 3 - i\\ \Rightarrow \left| {\rm{w}} \right| = \sqrt {10} \end{array}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"