Đề số 7 - Đề kiểm tra học kì 2 (Đề thi học kì 2) - Toán 12

2024-09-14 19:47:44

Đề bài

Câu 1: Trong không gian Oxyz, cho hai điểm \(M\left( {2;1; - 2} \right);N\left( {4; - 5;1} \right)\). Độ dài đoạn thẳng MN bằng

A. \(\sqrt {41} \)             B. 7.

C. 49.                             D. \(\sqrt 7 \)

Câu 2: Họ các nguyên hàm của hàm số \(f\left( x \right) = {\left( {2x + 3} \right)^5}\) là

A. \(F\left( x \right) = 10{\left( {2x + 3} \right)^4} + C.\)

B. \(F\left( x \right) = 5{\left( {2x + 3} \right)^4} + C.\)

C. \(F\left( x \right) = \frac{{{{\left( {2x + 3} \right)}^6}}}{{12}} + C.\)          

D. \(F\left( x \right) = \frac{{{{\left( {2x + 3} \right)}^6}}}{6} + C.\)

Câu 3: Cho số phức \(z = 2 - i\). Trong mặt phẳng tọa độ Oxyz, điểm biểu diễn của số phức \(\overline z \) có tọa độ là

A. \(\left( {2; - 1} \right).\)   B. \(\left( {2;1} \right).\)

C. \(\left( {1;2} \right).\)      D. \(\left( { - 2;1} \right).\)

Câu 4: Số phức z thỏa mãn \(2z - 3\left( {1 + i} \right) = iz + 7 - 3i\) là

A. \(z = \frac{{14}}{5} + \frac{8}{5}i.\)

B. \(z = 4 - 2i.\)

C. \(z = 4 + 2i.\)

D. \(z = \frac{{14}}{5} - \frac{8}{5}i.\)

Câu 5: Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng

A. \(\int\limits_a^b {\left| {f\left( x \right) + g\left( x \right)} \right|dx} \)

B. \(\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)

C. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)

D. \(\left| {\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} } \right|.\)

Câu 6: Tích phân \(\int\limits_1^e {\frac{{\ln x}}{x}dx} \) bằng:

A. \(\frac{{{e^2} + 1}}{2}\)

B. \(\frac{1}{2}\)

C. \( - \frac{1}{2}\)

D. \(\frac{{{e^2} - 1}}{2}\)

Câu 7: Trong không gian Oxyz, phương trình mặt cầu có tâm \(I\left( { - 1;1; - 2} \right)\) và đi qua điểm \(A\left( {2;1;2} \right)\) là

A. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 25.\)

B. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 5.\)

C. \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 25.\)

D. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 25.\)

Câu 8: Tích phân \(\int\limits_0^1 {\left( {3x + 1} \right)\left( {x + 3} \right)dx} \) bằng

A. 6.                               B. 12.

C. 9.                               D. 5.

Câu 9: Trong không gian Oxyz, mặt phẳng \(\left( P \right):2x - z + 1 = 0\) có một vecto pháp tuyến là

A. \(\overrightarrow n  = \left( {2; - 1;1} \right)\).

B. \(\overrightarrow n  = \left( {2;0; - 1} \right)\)

C. \(\overrightarrow n  = \left( {2;0;1} \right)\)

D. \(\overrightarrow n  = \left( {2;1; - 1} \right)\)

Câu 10: Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1;\) \(x = 2\) bằng

A. \(\frac{7}{3}.\)               B. \(\frac{2}{3}.\)

C. \(\frac{3}{2}.\)               D. \(\frac{1}{3}.\)

Câu 11: Biết rằng \(\left( {2 + 3i} \right)a + \left( {1 - 2i} \right)b = 4 + 13i\) với \(a,\,\,b\) là các số thực. Giá trị của \(a + b\) bằng

A. 1.                               B. 9.

C. 5.                               D. \( - 3.\)

Câu 12: Giá trị dương của tham số m sao cho diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2x + 3\) và các đường thẳng \(y = 0,\) \(x = 0,\) \(x = m\) bằng 10 là

A. \(m = 5\)                      B. \(m = 1.\)

C. \(m = \frac{7}{2}.\)         D. \(m = 2.\)

Câu 13: Trong không gian Oxyz, cho hai điểm \(A\left( {1;3;5} \right)\) và \(B\left( {1; - 1;1} \right)\). Trung điểm của đoạn thẳng AB có tọa độ là

A. \(\left( {2;2;6} \right)\)

B. \(\left( {0; - 4; - 4} \right)\)

C. \(\left( {0; - 2; - 2} \right)\)

D. \(\left( {1;1;3} \right)\)

Câu 14: Hai số phức \(\frac{3}{2} + \frac{{\sqrt 7 }}{2}i\) và \(\frac{3}{2} - \frac{{\sqrt 7 }}{2}i\) là nghiệm của phương trình nào sau đây?

A. \({z^2} - 3z - 4 = 0\)

B. \({z^2} + 3z + 4 = 0\)

C. \({z^2} - 3z + 4 = 0\)

D. \({z^2} + 3z - 4 = 0\)

Câu 15: Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là

A. \(F\left( x \right) =  - \frac{1}{2}\cos 2x + C.\)

B. \(F\left( x \right) =  - \cos 2x + C.\)                      

C. \(F\left( x \right) =  - 2\cos 2x + C.\)

D. \(F\left( x \right) = \frac{1}{2}\cos 2x + C.\)

Câu 16: Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm \(M\left( {2;0; - 1} \right)\) và có vecto chỉ phương \(\overrightarrow a  = \left( {2; - 3;1} \right)\) là

A. \(\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 3t\\z =  - 1 + t\end{array} \right.\)

B. \(\left\{ \begin{array}{l}x = 4 + 2t\\y =  - 6\\z = 2 - t\end{array} \right.\)

C. \(\left\{ \begin{array}{l}x =  - 2 + 2t\\y =  - 3t\\z = 2 - t\end{array} \right.\)

D. \(\left\{ \begin{array}{l}x =  - 2 + 4t\\y =  - 6t\\z = 1 + 2t\end{array} \right.\)

Câu 17: Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 2x\), trục hoành, đường thẳng \(x = 0;\) \(x = 1\) quanh trục hoành bằng

A. \(\frac{{2\pi }}{3}.\)         B. \(\frac{{4\pi }}{3}.\)

C. \(\frac{{8\pi }}{{15}}.\)     D. \(\frac{{16\pi }}{{15}}.\)

Câu 18: Cho hàm số \(f\left( x \right)\) liên tục có đạo hàm trên đoạn \(\left[ { - 1;2} \right],\) \(f\left( { - 1} \right) = 8;\) \(f\left( 2 \right) =  - 1\). Tích phân \(\int\limits_{ - 1}^2 {f'\left( x \right)dx} \) bằng

A. \( - 9\)                         B. 9.

C. 1.                               D. 7.

Câu 19: Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y - 2z - 2 = 0\) và điểm \(I\left( {1;2; - 3} \right)\). Bán kính của mặt cầu có tâm \(I\) và tiếp xúc với mặt phẳng \(\left( P \right)\) bằng:

A. \(1\)                            B. \(\frac{{11}}{3}\)

C. \(3\)                            D. \(\frac{1}{3}\)

Câu 20: Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0\) có tọa độ tâm I và bán kính R lần lượt là

A. \(I\left( { - 4;1;0} \right);\,\,R = 4.\)

B. \(I\left( {8; - 2;0} \right);\,\,R = 2\sqrt 7 .\)

C. \(I\left( {4; - 1;0} \right);\,\,R = 4.\)

D. \(I\left( {4; - 1;0} \right);\,\,R = 16.\)

Câu 21: Trong không gian Oxyz, cho điểm \(I\left( {1;2;0} \right)\) và mặt phẳng \(\left( P \right):2x - 2y + z - 7 = 0\). Gọi \(\left( S \right)\) là mặt cầu có tâm I và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn \(\left( C \right)\). Biết rằng hình tròn \(\left( C \right)\) có diện tích bằng \(16\pi \). Mặt cầu \(\left( S \right)\) có phương trình là

A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 16.\)

B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 7.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 25.\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 9.\)

Câu 22: Tích phân \(\int\limits_0^1 {\left( {x - 2} \right){e^{2x}}dx} \) bằng

A. \(\frac{{5 - 3{e^2}}}{4}.\)

B. \(\frac{{5 - 3{e^2}}}{2}.\)

C. \(\frac{{5 + 3{e^2}}}{4}.\)

D. \(\frac{{ - 5 - 3{e^2}}}{4}.\)

Câu 23: Họ nguyên hàm của hàm số \(f\left( x \right) = x\sin x\) là

A. \(F\left( x \right) = x\cos x + \sin x + C.\)               

B. \(F\left( x \right) = x\cos x - \sin x + C.\)

C. \(F\left( x \right) =  - x\cos x - \sin x + C.\)

D. \(F\left( x \right) =  - x\cos x + \sin x + C.\)

Câu 24: Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = 4x - {x^2}\) và \(y = 2x\) bằng

A. \(\frac{{20}}{3}.\)           B. \(\frac{{16}}{3}\)

C. 4.                               D. \(\frac{4}{3}\)

Câu 25: Cho \(\int {f\left( x \right)dx = F\left( x \right) + C} \). Khi đó \(\int {f\left( {2x - 3} \right)dx} \)

A. \(F\left( {2x - 3} \right) + C.\)

B. \(\frac{1}{2}F\left( {2x - 3} \right) + C.\)

C. \(\frac{1}{2}F\left( {2x} \right) - 3 + C.\)

D. \(F\left( {2x} \right) - 3 + C.\)

Câu 26: Gọi \({z_1};\,\,{z_2}\) lần lượt là nghiệm của phương trình \({z^2} - 2z + 5 = 0\). Giá trị \({\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) bằng

A. 10.                             B. \(2\sqrt 5 \)

C. 2.                               D. 20.

Câu 27: Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm \(M\left( {2; - 3;4} \right)\) và có vecto pháp tuyến \(\overrightarrow n  = \left( { - 2;4;1} \right)\) là

A. \(2x - 4y - z - 12 = 0.\)

B. \(2x - 3y + 4z - 12 = 0\)

C. \(2x - 4y - z + 12 = 0\)

D. \(2x - 3y + 4z + 12 = 0\)

Câu 28: Phần ảo của số phức\(z = 2019 + {i^{2019}}\) bằng

A. 2019                          B. -1

C. -2019                         D. 1

Câu 29: Mô đun của số phức \(z =  - 1 + i\) bằng

A. 2.                               B. 1.

C. 0.                               D. \(\sqrt 2 .\)

Câu 30: Tìm số phức z thỏa mãn \(\overline z  = 2 - i\) là

A. \(z = 2 + i\).

B. \(z = 1 - 2i\)

C. \(z =  - 2 - i\)

D. \(z =  - 2 + i\)

Câu 31: Biết số phức thỏa mãn \(\left| {iz - 3} \right| = \left| {z - 2 - i} \right|\) và \(\left| z \right|\) có giá trị nhỏ nhất. Phần thực của số phức z bằng

A. \(\frac{2}{5}.\)               B. \(\frac{1}{5}.\)

C. \( - \frac{2}{5}.\)            D. \( - \frac{1}{5}.\)

Câu 32: Biết \(F\left( x \right) =  - \frac{{\left( {x - a} \right){\rm{cos3}}x}}{b} + \frac{1}{c}\sin 3x + 2019\) là  một nguyên hàm của hàm số \(f\left( x \right) = \left( {x - 2} \right)\sin 3x,\)\(a,\,\,b,\,\,c \in \mathbb{Z}\) . Giá trị của \(ab + c\) bằng

A. 18.                             B. 14.

C. 15.                             D. 10.

Câu 33: Trong không gian Oxyz, cho hai vecto \(\overrightarrow m  = \left( {4;3;1} \right)\) và \(\overrightarrow n  = \left( {0;0;1} \right)\). Gọi \(\overrightarrow p \) là vecto cùng hướng với \(\left[ {\overrightarrow m ;\overrightarrow n } \right]\) và \(\left| {\overrightarrow p } \right| = 15\). Tìm tọa độ của \(\overrightarrow p \) là

A. \(\left( { - 9;12;0} \right)\)

B. \(\left( {9; - 12;0} \right)\)

C. \(\left( {0;9; - 12} \right)\)

D. \(\left( {0; - 9;12} \right)\)

Câu 34: Trong không gian Oxyz cho hình thang cân ABCD có đáy ABCD. Biết \(A\left( {3;1; - 2} \right),\) \(B\left( { - 1;3;2} \right),\) \(C\left( { - 6;3;6} \right);\) \(D\left( {a;b;c} \right);\) \(a,b,c \in \mathbb{R}\). Giá trị \(a + b + c\) bằng

A. \( - 1\).                        B. 1.

C. 3.                               D. \( - 3.\)

Câu 35: Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới. mệnh đề nào sau đây là đúng?

A. \(f\left( 0 \right) > f\left( 2 \right) > f\left( { - 1} \right).\)

B. \(f\left( 0 \right) > f\left( { - 1} \right) > f\left( 2 \right).\)

C. \(f\left( 2 \right) > f\left( 0 \right) > f\left( { - 1} \right).\)

D. \(f\left( { - 1} \right) > f\left( 0 \right) > f\left( 2 \right).\)

Câu 36: Cho số phức \(z = m - 2 + \left( {{m^2} - 1} \right)i,\,\,m \in \mathbb{R}\). Gọi \(\left( C \right)\) là tập hợp các điểm biểu diễn số phức z trong mặt phẳng tọa độ. Diện tích hình phẳng giới hạn bởi \(\left( C \right)\) và trục hoành bằng

A. \(\frac{4}{3}.\)               B. \(\frac{{32}}{3}.\)

C. \(\frac{8}{3}.\)               D. 1.

Câu 37: Hình vuông OABC có cạnh bằng 4 được chia thành hai phần bởi đường cong \(\left( C \right)\) có phương trình \(y = \frac{1}{4}{x^2}\). Gọi \({S_1};\,\,{S_2}\) lần lượt là diện tích phần không bị gạch và phần bị gạch như hình bên dưới.  Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng.

A. \(\frac{3}{2}.\)            B. 3.

C. \(\frac{1}{2}.\)               D. 2.

Câu 38: Biết tích phân \(\int\limits_0^{\frac{\pi }{6}} {\frac{{dx}}{{1 + \sin x}} = \frac{{a\sqrt 3  + b}}{c}} \)\(;a,\,\,b,\,\,c\) là các số nguyên. Giá trị \(a + b + c\) bằng

A. \( - 1.\)                        B. 12.

C. 7.                               D. 5.

Câu 39: Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 4x - 6y + m = 0\) với m là tham số; và đường thằng \(\Delta :\left\{ \begin{array}{l}x = 4 + 2t\\y = 3 + t\\z = 3 + 2t\end{array} \right.\). Biết đường thẳng \(\Delta \) cắt mặt cầu \(\left( S \right)\) tại hai điểm phân biệt A ,B sao cho \(AB = 8\). Giá trị của m

A. \(m = 12.\)

B. \(m =  - 12.\)

C. \(m =  - 10.\)

D. \(m = 5.\)

Câu 40: Một ô tô đang chạy với vận tốc 20 m/s thì người ta nhìn thấy một chướng ngại vật nên đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) =  - 2t + 20\), trong đó t là thời gian (tính bằng giấy) kể từ lúc đạp phanh. Quãng đường mà ô tô đi được trong 15 giây cuối cùng bằng

A. 125 m.                       B. 75 m.

C. 200 m.                       D. 100 m.

Câu 41: Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 1 = 0\) và hai điểm \(A\left( {1;0; - 2} \right),\) \(B\left( { - 1; - 1;3} \right)\). Mặt phẳng \(\left( Q \right)\) đi qua hai điểm A, B và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là

A. \(3x + 14y + 4z - 5 = 0.\)

B. \(2x - y + 2z - 2 = 0.\)

C. \(2x - y + 2z + 2 = 0.\)

D. \(3x + 14y + 4z + 5 = 0.\)

Câu 42: Cho hàm số \(f\left( x \right)\) liên tục, có đạo hàm trên \(\mathbb{R}\), \(f\left( 2 \right) = 16\) và \(\int\limits_0^8 {f\left( x \right)dx = 4} \). Tích phân \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} \) bằng:

A. 112.                           B. 12.

C. 56.                             D. 144.

Câu 43: Biết rằng \(\int\limits_0^1 {x{e^{{x^2} + 2}}dx = \frac{a}{2}\left( {{e^b} - {e^c}} \right)} \) với \(a,\,\,b,\,\,c \in \mathbb{Z}\). Giá trị của \(a + b + c\) bằng

A. 4.                               B. 7.

C. 5.                               D. 6.

Câu 44: Biết rằng \(z = {m^2} - 3m + 3 + \left( {m - 2} \right)i\)  \(\left( {m \in \mathbb{R}} \right)\) là một số thực. Giá trị của biểu thức  \(1 + z + {z^2} + {z^3} + ... + {z^{2019}}\) bằng

A. 2019.                         B. 0.

C. 1.                               D. 2020.

Câu 45: Trong không gian Oxyz, cho đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z - 3}}{1}\) và điểm \(A\left( {1;0; - 1} \right)\). Gọi \({d_2}\) là đường thẳng đi qua  A và có vecto chỉ phương \(\overrightarrow u  = \left( {a;1;2} \right)\). Giá trị của a sao cho đường thẳng \({d_1}\) cắt đường thẳng \({d_2}\) là

A. \(a =  - 1.\)

B. \(a = 2.\)

C. \(a = 0.\)

D. \(a = 1.\)

Câu 46: Trong không gian Oxyz, cho hai điểm \(A\left( {3;5; - 1} \right)\) và \(B\left( {1;1;3} \right)\). Tọa độ điểm M  thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) nhỏ nhất là

A. \(M\left( { - 2;3;0} \right).\)

B. \(M\left( {2;3;0} \right).\)

C. \(M\left( { - 2; - 3;0} \right).\)

D. \(M\left( {2; - 3;0} \right).\)

Câu 47: Trong không gian Oxyz, biết mặt cầu \(\left( S \right)\) tâm O và tiếp xúc với mặt phẳng \(\left( P \right):x - 2y + 2z + 9 = 0\) tại điểm \(H\left( {a;b;c} \right)\). Giá trị tổng \(a + b + c\) bằng

A. 2.                               B. \( - 1.\)

C. 1.                               D. \( - 2.\)

Câu 48: Trong không gian Oxyz, cho đường thẳng \(d:\frac{x}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{{ - 3}}\) và mặt phẳng \(\left( P \right):x - y + 2z - 6 = 0\). Đường thẳng nằm trong mặt phẳng \(\left( P \right)\), cắt và vuông góc với đường thẳng d có phương trình là

A. \(\frac{{x + 2}}{1} = \frac{{y - 2}}{7} = \frac{{z - 5}}{3}.\)

B. \(\frac{{x - 2}}{1} = \frac{{y - 4}}{7} = \frac{{z + 1}}{3}.\)

C. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{7} = \frac{{z - 1}}{3}.\)

D. \(\frac{{x - 2}}{1} = \frac{{y + 2}}{7} = \frac{{z + 5}}{3}.\)

Câu 49: Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^2} + x\) và \(F\left( 1 \right) = 1\). Giá trị của \(F\left( { - 1} \right)\) bằng

A. \(\frac{1}{3}.\)               B. 1.

C. \(\frac{1}{2}.\)               D. \(\frac{1}{6}.\)

Câu 50: Biết số phức z thỏa mãn điều kiện \(\frac{{5\left( {\overline z  + i} \right)}}{{z + 1}} = 2 - i\). Mô đun số phức \({\rm{w}} = 1 + z + {z^2}\) bằng

A. 13.                             B. 2.

C. \(\sqrt {13} .\)      D. \(\sqrt 2 \)

Lời giải chi tiết

1. B

2. C

3. B

4. C

5. B

6. B

7. A

8. C

9. B

10. B

11. A

12. D

13. D

14. C

15. A

16. A

17. C

18. A

19. C

20. A

21. C

22. A

23. D

24. D

25. B

26. A

27. A

28. B

29. D

30. A

31. D

32. C

33. B

34. D

35. B

36. A

37. D

38. D

39. B

40. B

41. D

42. A

43. D

44. D

45. C

46. B

47. B

48. A

49. A

50. C

Câu 1 (NB)

Phương pháp:

Áp dụng công thức tính độ dài đoạn thẳng: \(MN = \) \(\sqrt {{{\left( {{x_N} - {x_M}} \right)}^2} + {{\left( {{y_N} - {y_M}} \right)}^2} + {{\left( {{z_N} - {z_M}} \right)}^2}} \)

Cách giải:

\(MN = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( { - 5 - 1} \right)}^2} + {{\left( {1 + 2} \right)}^2}} \)\( = 7\)

Chọn B.

Câu 2 (TH)

Phương pháp:

Áp dụng công thức tính nguyên hàm của hàm số mũ: \(\int {{{\left( {ax + b} \right)}^c}dx = \frac{1}{a}\frac{{{{\left( {ax + b} \right)}^{c + 1}}}}{{c + 1}}} \)

Cách giải:

Ta có \(\int {{{\left( {2x + 3} \right)}^5}dx = \frac{1}{2}.\frac{{{{\left( {2x + 3} \right)}^6}}}{6} + C} \)\( = \frac{{{{\left( {2x + 3} \right)}^6}}}{{12}} + C\)

Chọn C.

Câu 3 (NB)

Phương pháp:

- Số phức liên hợp của số phức \(z = a + bi\) là \(\overline z  = a - bi\).

- Điểm biểu diễn số phức \(\overline z  = a - bi\) trong mặt phẳng tọa độ là \(M\left( {a; - b} \right)\).

Cách giải:

Ta có: \(z = 2 - i \Rightarrow \overline z  = 2 + i\)

\( \Rightarrow \)  Điểm biểu diễn của số phức \(\overline z \) trong mặt phẳng tọa độ là \(\left( {2;1} \right).\)

Chọn B.

Câu 4 (TH)

Phương pháp:

Đưa phương trình về phương trình bậc nhất đối với \(z\) và tìm \(z\).

Cách giải:

\(\begin{array}{l}2z - 3\left( {1 + i} \right) = iz + 7 - 3i\\ \Leftrightarrow \left( {2 - i} \right)z = 7 - 3i + 3\left( {1 + i} \right)\\ \Leftrightarrow \left( {2 - i} \right)z = 10\\ \Leftrightarrow z = \frac{{10}}{{2 - i}} = 4 + 2i\end{array}\)

Chọn C.

Câu 5 (NB)

Phương pháp:

Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Cách giải:

Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Chọn B.

Câu 6 (TH) 

Phương pháp: 

Sử dụng phương pháp tính phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Cách giải:

Ta có \(I = \int\limits_1^e {\frac{{\ln x}}{x}dx} \)

Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = \frac{{dx}}{x}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{{dx}}{x}\\v = \ln x\end{array} \right.\)

Khi đó ta có:

\(\begin{array}{l}\,\,\,\,\,\,I = \left. {{{\ln }^2}x} \right|_1^e - \int\limits_1^e {\frac{{\ln x}}{x}dx} \\ \Leftrightarrow I = {\ln ^2}e - {\ln ^2}1 - I\\ \Leftrightarrow 2I = 1 \Leftrightarrow I = \frac{1}{2}\end{array}\)

Chọn B.

Câu 7 (TH)

Phương pháp:

- Mặt cầu tâm \(I\) đi qua điểm \(A\) có bán kính \(R = IA\).

- Sử dụng công thức tính độ dài đoạn thẳng:

\(IA = \)\(\sqrt {{{\left( {{x_A} - {x_I}} \right)}^2} + {{\left( {{y_A} - {y_I}} \right)}^2} + {{\left( {{z_A} - {z_I}} \right)}^2}} \)

- Viết phương trình mặt cầu khi biết tâm \(I\left( {a;b;c} \right)\) và bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Cách giải:

Ta có \(I\left( { - 1;1; - 2} \right);A\left( {2;1;2} \right)\) \( \Rightarrow IA = \sqrt {{3^2} + {0^2} + {4^2}}  = 5\)

Vì mặt cầu tâm \(I\) đi qua điểm \(A\) có bán kính \(R = IA = 5\).

Vậy phương trình mặt cầu cần tìm là: \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 25.\)

Chọn A.

Câu 8 (NB)

Phương pháp:

- Nhân phá ngoặc biểu thức dưới dấu tích phân.

- Sử dụng nguyên hàm cơ bản: \(\int {{x^n}dx}  = \frac{{{x^{n + 1}}}}{{n + 1}} + C\,\,\left( {n \ne  - 1} \right)\).

Cách giải:

\(\begin{array}{l}\,\,\,\,\int\limits_0^1 {\left( {3x + 1} \right)\left( {x + 3} \right)dx} \\ = \int\limits_0^1 {\left( {3{x^2} + 10x + 3} \right)dx} \\ = \left. {\left( {{x^3} + 5{x^2} + 3x} \right)} \right|_0^1 = 9\end{array}\)

Chọn C.

Câu 9 (NB)

Phương pháp:

Mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) có 1 VTPT là \(\overrightarrow n \left( {A;B;C} \right)\).

Cách giải:

Mặt phẳng \(\left( P \right):2x - z + 1 = 0\) có 1 vecto pháp tuyến là \(\left( {2;0; - 1} \right).\)

Chọn B.

Câu 10 (TH)

Phương pháp:

- Giải phương trình hoành độ giao điểm tìm các nghiệm thuộc \(\left[ {1;2} \right]\).

- Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Cách giải:

Xét phương trình hoành độ giao điểm: \({\left( {x - 2} \right)^2} - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x - 2 = 1\\x - 2 =  - 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).

Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1,x = 2\) bằng: \(S = \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2} - 1} \right|dx} \)\( = \int\limits_1^2 {\left( { - {x^2} + 4x - 3} \right)dx}  = \frac{2}{3}.\)

Chọn B.

Câu 11 (TH)

Phương pháp:

- Hai số phức bằng nhau \({a_1} + {b_1}i = {a_2} + {b_2}i \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {a_2}\\{b_1} = {b_2}\end{array} \right.\).

- Giải hệ phương trình tìm \(a,\,\,b\) sau đó tính tổng \(a + b\).

Cách giải:

\(\begin{array}{l}\,\,\,\,\,\,\left( {2 + 3i} \right)a + \left( {1 - 2i} \right)b = 4 + 13i\\ \Leftrightarrow \left( {2a + b} \right) + \left( {3a - 2b} \right)i = 4 + 13i\\ \Leftrightarrow \left\{ \begin{array}{l}2a + b = 4\\3a - 2b = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b =  - 2\end{array} \right.\end{array}\)

Vậy \(a + b = 3 + \left( { - 2} \right) = 1.\)

Chọn A.

Câu 12 (TH)

Phương pháp:

Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Cách giải:

Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2x + 3\) và các đường thẳng \(y = 0,\) \(x = 0,\) \(x = m\) bằng là: \(S = \int\limits_0^m {\left| {2x + 3} \right|dx} \)\( = \left| {\left. {\left( {{x^2} + 3x} \right)} \right|_0^m} \right| = \left| {{m^2} + 3m} \right|.\)

Theo bài ra ta có: \(S = 10\)

\(\begin{array}{l} \Leftrightarrow \left| {{m^2} + 3m} \right| = 10\\ \Leftrightarrow \left[ \begin{array}{l}{m^2} + 3m = 10\\{m^2} + 3m =  - 10\,\,\left( {VN} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 2\\m =  - 5\end{array} \right.\end{array}\)

Mà \(m\) là số nguyên dương. Vậy \(m = 2\).

Chọn D.

Câu 13 (NB)

Phương pháp:

Điểm \(I\) là trung điểm của \(AB\) thì \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2}\\{z_I} = \frac{{{z_A} + {z_B}}}{2}\end{array} \right.\).

Cách giải:

Gọi \(I\) là trung điểm của \(AB\)\( \Rightarrow I\left( {\frac{{1 + 1}}{2};\frac{{3 + \left( { - 1} \right)}}{2};\frac{{5 + 1}}{2}} \right)\)\( \Rightarrow I\left( {1;1;3} \right).\)

Chọn D.

Câu 14 (TH)

Phương pháp:

- Tính tổng \(S = {z_1} + {z_2}\) và tích \(P = {z_1}{z_2}\) của hai số phức.

- Khi đó \({z_1},\,\,{z_2}\) là hai nghiệm của phương trình \({X^2} - SX + P = 0.\)

Cách giải:

Đặt \({z_1} = \frac{3}{2} + \frac{{\sqrt 7 }}{2}i;{z_2} = \frac{3}{2} - \frac{{\sqrt 7 }}{2}i\)\( \Rightarrow \left\{ \begin{array}{l}S = {z_1} + {z_2} = 3\\P = {z_1}.{z_2} = 4\end{array} \right..\)

Vậy \({z_1};\,\,{z_2}\) là nghiệm của phương trình \({z^2} - 3z + 4 = 0.\)

Chọn C.

Câu 15 (NB)

Phương pháp:

Áp dụng công thức tính nguyên hàm của hàm lượng giác: \(\int {\sin kxdx}  =  - \frac{1}{k}\cos kx + C\).

Cách giải:

\(\int {f\left( x \right)dx = \int {\sin 2xdx} } \)\( =  - \frac{1}{2}\cos 2x + C\)

Chọn A.

Câu 16 (NB)

Phương pháp:

Phương trình đường thẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTCP \(\overrightarrow u \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).

Cách giải:

Phương trình đường thẳng đi qua điểm \(M\left( {2;0; - 1} \right)\) và có 1 VTCP \(\overrightarrow a  = \left( {2; - 3;1} \right)\) là: \(\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 3t\\z =  - 1 + t\end{array} \right..\)

Chọn A.

Câu 17 (NB)

Phương pháp:

Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành, đường thẳng \(x = a;\) \(x = b\) quanh trục hoành bằng \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \).

Cách giải:

Thể tích khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 2x\), trục hoành, đường thẳng \(x = 0,\) \(x = 1\) quanh trục hoành là: \(V = \pi \int\limits_0^1 {{{\left( {{x^2} - 2x} \right)}^2}dx}  = \frac{{8\pi }}{{15}}.\)

Chọn C.

Câu 18 (TH)

Phương pháp:

Sử dụng công thức tích phân Newton – Leibniz: \(\int\limits_a^b {f'\left( x \right)dx}  = f\left( b \right) - f\left( a \right)\).

Cách giải:

\(\int\limits_{ - 1}^2 {f'\left( x \right)dx}  = \left. {f\left( x \right)} \right|_{ - 1}^2\)\( = f\left( 2 \right) - f\left( { - 1} \right) =  - 1 - 8 =  - 9\)

Chọn A.

Câu 19 (TH)

Phương pháp:

- Bán kính của mặt cầu có tâm \(I\) và tiếp xúc với mặt phẳng \(\left( P \right)\) chính bằng khoảng cách từ \(I\) đến \(\left( P \right)\).

- Khoảng cách từ \(I\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là : \(d\left( {I;\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

Cách giải:

Vì mặt cầu tâm I tiếp xúc với mặt phẳng \(\left( P \right)\) nên \(R = d\left( {I;\left( P \right)} \right).\)

Ta có \(d\left( {I;\left( P \right)} \right) = \frac{{\left| {1 + 2.2 - 2.\left( { - 3} \right) - 2} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} }}\)\( = \frac{9}{3} = 3\)

Vậy bán kính mặt cầu cần tìm là \(R = 3\).

Chọn C.

Câu 20 (TH)

Phương pháp:

Mặt cầu \(\left( S \right):\)\({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Cách giải:

Mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0\) có tâm \(I\left( {4; - 1;0} \right)\) và bán kính \(R = \sqrt {{4^2} + {{\left( { - 1} \right)}^2} + {0^2} - 1}  = 4.\)

Chọn A.

Câu 21 (TH)

Phương pháp:

- Tính khoảng cách từ I xuống : Khoảng cách từ \(I\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là : \(d\left( {I;\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

- Tính bán kính đường tròn giao tuyến \(r\), sử dụng công thức \(S = \pi {r^2}\).

- Áp dụng định lý Pytago để tính bán kính mặt cầu: \({R^2} = {r^2} + {d^2}\).

- Viết phương trình mặt cầu khi biết tâm \(I\left( {a;b;c} \right)\) và bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Cách giải:

Ta có \(I\left( {1;2;0} \right);\) \(\left( P \right):2x - 2y + z - 7 = 0\)

\( \Rightarrow d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.1 - 2.2 + 0 - 7} \right|}}{{\sqrt {4 + 4 + 1} }} = 3.\)

Đường tròn tâm A có \(S = 16\pi \)\( \Rightarrow \pi .A{B^2} = 16\pi  \Rightarrow AB = 4\)

Áp dụng định lý Pyatgo trong tam giác ABI có \(I{B^2} = I{A^2} + A{B^2} = {3^2} + {4^2}\)\( \Rightarrow R = IB = 5\)

Mặt cầu tâm \(I\left( {1;2;0} \right)\) bán kính \(R = 5\) có phương trình là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 25.\)

Chọn C.

Câu 22 (TH)

Phương pháp:

Sử dụng phương pháp tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Cách giải:

Gọi \(I = \int\limits_0^1 {\left( {x - 2} \right){e^{2x}}dx} \)

Đặt \(\left\{ \begin{array}{l}u = x - 2\\dv = {e^{2x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = \frac{{{e^{2x}}}}{2}\end{array} \right..\)

Khi đó ta có: 

\(\begin{array}{l}I = \left. {\left( {x - 2} \right)\frac{{{e^{2x}}}}{2}} \right|_0^1 - \int\limits_0^1 {\frac{{{e^{2x}}}}{2}dx} \\\,\,\, =  - \frac{1}{2}{e^2} + 1 - \left. {\frac{{{e^{2x}}}}{4}} \right|_0^1\\\,\,\, =  - \frac{1}{2}{e^2} + 1 - \frac{{{e^2}}}{4} + \frac{1}{4}\\\,\,\, =  - \frac{3}{4}{e^2} + \frac{5}{4} = \frac{{5 - 3{e^2}}}{4}\end{array}\)

Chọn A.

Câu 23 (TH)

Phương pháp:

Sử dụng phương pháp nguyên hàm từng phần: \(\int {udv}  = uv - \int {vdu}  + C\).

Cách giải:

Ta có \(\int {f\left( x \right)dx = \int {x\sin x} dx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = \sin xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \cos x\end{array} \right.\)

Khi đó \(\int {f\left( x \right) =  - x\cos x + \int {\cos xdx}  + C} \)\( =  - x\cos x + \sin x + C\)

Chọn D.

Câu 24 (TH)

Phương pháp:

- Tìm hoành độ giao điểm của hai đồ thị hàm số.

- Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Cách giải:

Xét phương trình hoành độ giao điểm \(4x - {x^2} = 2x \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right..\)

Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số trên là:

\(S = \int\limits_0^2 {\left| {{x^2} - 2x} \right|dx} \)\( = \int\limits_0^2 {\left( {2x - {x^2}} \right)dx}  = \frac{4}{3}.\)

Chọn D.

Câu 25 (TH)

Phương pháp:

Sử dụng phương pháp đổi biến số, đặt \(t = 2x - 3\).

Cách giải:

Đặt \(t = 2x - 3 \Rightarrow dt = 2xdx\).

Khi đó ta có: \(\int {f\left( {2x - 3} \right)dx}  = \frac{1}{2}\int {f\left( t \right)dt} \).

Mà \(\int {f\left( x \right)dx}  = F\left( x \right) + C\) nên \(\int {f\left( t \right)dt}  = F\left( t \right) + C\)\( = F\left( {2x - 3} \right) + C\)

Vậy \(\int {f\left( {2x - 3} \right)dx}  = \frac{1}{2}F\left( {2x - 3} \right) + C\).

Chọn B.

Câu 26 (TH)

Phương pháp:

Tìm nghiệm của phương trình rồi tìm tính.

Cách giải:

Ta có

\(\begin{array}{l}{z^2} - 2z + 5 = 0\\ \Leftrightarrow \left\{ \begin{array}{l}{z_1} = 1 + 2i\\{z_2} = 1 - 2i\end{array} \right.\\ \Rightarrow {\left| {{z_1}} \right|^2} = {\left| {{z_2}} \right|^2} = 5\\ \Rightarrow {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = 10\end{array}\)

Chọn A.

Câu 27 (NB)

Phương pháp:

Mặt phẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) có phương trình \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

Cách giải:

Mặt phẳng đi qua \(M\left( {2; - 3;4} \right)\) và có vecto pháp tuyến \(\overrightarrow n  = \left( { - 2;4;1} \right)\) có phương trình là

\( - 2\left( {x - 2} \right) + 4\left( {y + 3} \right) + \left( {z - 4} \right) = 0\)\( \Leftrightarrow 2x - 4y - z - 12 = 0\)

Chọn A.

Câu 28 (TH)

Phương pháp:

Áp dụng \({i^2} =  - 1\).

Cách giải:

Ta có \(z = 2019 + {i^{2019}} = 2019 + i.{\left( {{i^2}} \right)^{1009}}\)\( = 2019 + i\left( { - 1} \right) = 2019 - i\)

Vậy z có phần ảo bằng \( - 1.\)

Chọn B.

Câu 29 (NB)

Phương pháp:

Số phức \(z = a + bi\) có môđun \(\left| z \right| = \sqrt {{a^2} + {b^2}} \).

Cách giải:

Ta có \(z =  - 1 + i\)\( \Rightarrow \left| z \right| = \sqrt {{{\left( { - 1} \right)}^2} + {1^2}}  = \sqrt 2 \)

Chọn D.

Câu 30 (NB)

Phương pháp:

Số phức \(z = a + bi\) có số phức liên hợp \(\overline z  = a - bi\).

Cách giải:

Ta có \(\overline z  = 2 - i \Rightarrow z = 2 + i.\)

Chọn A.

Câu 31 (VD)

Phương pháp:

- Đặt ẩn \(z = a + bi\), rút a  theo b rồi tính.

- Tính \(\left| z \right| = \sqrt {{a^2} + {b^2}} \), thế \(a\) theo \(b\) và tìm GTNN bằng cách đưa biểu thức về dạng hằng đẳng thức.

Cách giải:

Đặt \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\)

Theo bài ra ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,\left| {iz - 3} \right| = \left| {z - 2 - i} \right|\\ \Leftrightarrow \left| {i\left( {a + bi} \right) - 3} \right| = \left| {a + bi - 2 - i} \right|\\ \Leftrightarrow \left| {\left( { - 3 - b} \right) + ai} \right| \\= \left| {\left( {a - 2} \right) + \left( {b - 1} \right)i} \right|\\ \Leftrightarrow {\left( {b + 3} \right)^2} + {a^2} \\= {\left( {a - 2} \right)^2} + {\left( {b - 1} \right)^2}\\ \Leftrightarrow {b^2} + 6b + 9 + {a^2} \\= {a^2} - 4a + 4 + {b^2} - 2b + 1\\ \Leftrightarrow 4a + 8b + 4 = 0\\ \Leftrightarrow a + 2b + 1 = 0\\ \Leftrightarrow a =  - 2b - 1\end{array}\)

Ta có:

\(\begin{array}{l}\left| z \right| = \sqrt {{a^2} + {b^2}}  = \sqrt {{{\left( {2b + 1} \right)}^2} + {b^2}} \\\,\,\,\,\,\, = \sqrt {5{b^2} + 4b + 1}  = \sqrt {5\left( {{b^2} + \frac{4}{5}b} \right) + 1} \\\,\,\,\,\,\, = \sqrt {5\left( {{b^2} + 2.b.\frac{2}{5} + \frac{4}{{25}}} \right) - \frac{4}{5} + 1} \\\,\,\,\,\,\, = \sqrt {5{{\left( {b + \frac{2}{5}} \right)}^2} + \frac{1}{5}}  \ge \frac{{\sqrt 5 }}{5}\end{array}\)

Dấu bằng xảy ra khi và chỉ khi \(b =  - \frac{2}{5} \Rightarrow a =  - \frac{1}{5}.\)

Vậy \({\mathop{\rm Re}\nolimits} z = a =  - \frac{1}{5}\).

Chọn D.

Câu 32 (VD)

Phương pháp:

- Sử dụng phương pháp nguyên hàm từng phần: \(\int {udv}  = uv - \int {vdu}  + C\).

- Đồng nhất hệ số tìm \(a,\,\,b,\,\,c\).

Cách giải:

Ta có \(F\left( x \right) = \int {f\left( x \right)}  = \int {\left( {x - 2} \right)\sin 3x} \).

Đặt \(\left\{ \begin{array}{l}u = x - 2\\dv = \sin 3xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \frac{1}{3}\cos 3x\end{array} \right.\)

\(\begin{array}{l} \Rightarrow F\left( x \right) = \int {f\left( x \right)dx} \\ =  - \frac{1}{3}\left( {x - 2} \right)\cos 3x + \frac{1}{3}\int {\cos 3xdx} \\ =  - \frac{{\left( {x - 2} \right)\cos 3x}}{3} + \frac{1}{9}\sin 3x + C\end{array}\)

Mà \(F\left( x \right) =  - \frac{{\left( {x - a} \right)\cos 3x}}{b} + \frac{1}{c}\sin 3x + 2019\)

Nên \(a = 2;\,\,b = 3;\,\,c = 9.\)

Vậy \(ab + c = 2.3 + 9 = 15.\)

Chọn C.

Câu 33 (VD)

Phương pháp:

- Tìm tích có hướng \(\left[ {\overrightarrow m ;\overrightarrow n } \right]\).

- Vì \(\overrightarrow p \) cùng hướng với \(\left[ {\overrightarrow m ;\overrightarrow n } \right]\) nên \(\overrightarrow p  = k\left[ {\overrightarrow m ;\overrightarrow n } \right]\) với \(k > 0\).

- Tìm \(\overrightarrow p \) và tính \(\left| {\overrightarrow p } \right|\), từ đó tìm được hằng số \(k\).

Cách giải:

Ta có \(\overrightarrow m  = \left( {4;3;1} \right);\,\,\overrightarrow n  = \left( {0;0;1} \right)\)\( \Rightarrow \left[ {\overrightarrow m ;\overrightarrow n } \right] = \left( {3; - 4;0} \right).\)

Mà \(\overrightarrow p ;\left[ {\overrightarrow m ;\overrightarrow n } \right]\) cùng hường nên \(\overrightarrow p  = \left( {3k; - 4k;0} \right);\left( {k > 0} \right)\)

Theo bài ra ta có: \(\left| {\overrightarrow p } \right| = 15\)

\(\begin{array}{l} \Rightarrow \sqrt {{{\left( {3k} \right)}^2} + {{\left( {4k} \right)}^2}}  = 15\\ \Leftrightarrow \sqrt {25{k^2}}  = 15\\ \Leftrightarrow 5k = 15\,\,\left( {Do\,\,k > 0} \right)\\ \Leftrightarrow k = 3\end{array}\)

Vậy \(\overrightarrow p  = \left( {9; - 12;0} \right).\)

Chọn B.

Câu 34 (VD)

Phương pháp:

- Sử dụng tính chất hình thang cân: ABCD là hình thang cân nên \(\left\{ \begin{array}{l}AD = BC\\AB\parallel CD\end{array} \right.\)

- \(\overrightarrow {BA} ,\,\,\overrightarrow {CD} \) cùng hướng nên \(\overrightarrow {CD}  = k\overrightarrow {BA} \,\,\left( {k > 0} \right)\), tham số hóa tọa độ điểm \(D\).

- Thay vào biểu thức \(AD = BC\) rồi tìm D.

- Loại trường hợp \(\overrightarrow {AD} ,\,\,\overrightarrow {BC} \) cùng phương.

Cách giải:

Vì \(ABCD\)  là hình thang cân nên \(\left\{ \begin{array}{l}AD = BC\\AB\parallel CD\end{array} \right.\)

Ta có: \(A\left( {3;1; - 2} \right);\,\,\,B\left( { - 1;3;2} \right);\)\(C\left( { - 6;3;6} \right);\,\,\,D\left( {a;b;c} \right)\)

\( \Rightarrow \overrightarrow {BA}  = \left( {4; - 2; - 4} \right);\)\(\overrightarrow {CD}  = \left( {a + 6;b - 3;c - 6} \right)\)

Vì \(\overrightarrow {BA} ,\,\,\overrightarrow {CD} \) cùng hướng nên \(\overrightarrow {CD}  = k\overrightarrow {BA} \,\,\left( {k > 0} \right)\), khi đó ta có:

\(\left\{ \begin{array}{l}a + 6 = 4k\\b - 3 =  - 2k\\c - 6 =  - 4k\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4k - 6\\b =  - 2k + 3\\c =  - 4k + 6\end{array} \right.\) \( \Rightarrow D\left( {4k - 6; - 2k + 3; - 4k + 6} \right)\).

Vì \(ABCD\) là hình thang cân nên \(AD = BC \Leftrightarrow A{D^2} = B{C^2}\).

\(\begin{array}{l} \Leftrightarrow {\left( {4k - 9} \right)^2} + {\left( { - 2k + 2} \right)^2} + {\left( { - 4k + 8} \right)^2}\\ = {\left( { - 5} \right)^2} + {0^2} + {4^2}\\ \Leftrightarrow 36{k^2} - 144k + 108 = 0\\ \Leftrightarrow \left[ \begin{array}{l}k = 3\\k = 1\end{array} \right.\,\,\,\left( {tm} \right)\end{array}\)

Với \(k = 3 \Rightarrow D\left( {6; - 3; - 6} \right)\).

Khi đó ta có: \(\overrightarrow {AD}  = \left( {3; - 4; - 4} \right),\,\,\overrightarrow {BC}  = \left( { - 5;0;4} \right)\) không cùng phương (thỏa mãn).

Với \(k = 1 \Rightarrow D\left( { - 2;1;2} \right)\).

Khi đó ta có: \(\overrightarrow {AD}  = \left( { - 5;0;4} \right),\,\,\overrightarrow {BC}  = \left( { - 5;0;4} \right)\) cùng phương (không thỏa mãn).

Vậy \(D\left( {6; - 3; - 6} \right) \Rightarrow a + b + c =  - 3.\)

Chọn D.

Câu 35 (VDC)

Phương pháp:

- Lập BBT của hàm số \(y = f\left( x \right)\).

- So sánh \(f\left( 0 \right)\) với \(f\left( { - 1} \right),\,\,f\left( 2 \right)\).

- Gọi \({S_1}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f'\left( x \right)\), đường thẳng \(x =  - 1,\,\,x = 0\) và trục hoành, \({S_2}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f'\left( x \right)\), đường thẳng \(x = 0,\,\,x = 2\) và trục hoành.

- Giải bất phương trình \({S_2} > {S_1}\).

Cách giải:

Dựa vào đồ thị hàm số ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 0\\x = 2\end{array} \right.\)

Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy \(f\left( 0 \right) > f\left( { - 1} \right).\,\,f\left( 0 \right) > f\left( 2 \right)\).

Gọi \({S_1}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f'\left( x \right)\), đường thẳng \(x =  - 1,\,\,x = 0\) và trục hoành, ta có: \({S_1} = \int\limits_{ - 1}^0 {\left| {f'\left( x \right)dx} \right|}  = \int\limits_{ - 1}^0 {f'\left( x \right)dx} \)\( = f\left( 0 \right) - f\left( { - 1} \right) > 0\)

Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f'\left( x \right)\), đường thẳng \(x = 0,\,\,x = 2\) và trục hoành, ta có:

\(\begin{array}{l}{S_2} = \int\limits_0^2 {\left| {f'\left( x \right)dx} \right|} \\ =  - \int\limits_0^2 {f'\left( x \right)dx} \\ =  - \left[ {f\left( 2 \right) - f\left( 0 \right)} \right]\\ = f\left( 0 \right) - f\left( 2 \right) > 0\end{array}\).

Dựa vào đồ thị hàm số ta thấy được:

\(\begin{array}{l}{S_2} > {S_1}\\ \Leftrightarrow f\left( 0 \right) - f\left( 2 \right) > f\left( 0 \right) - f\left( { - 1} \right)\\ \Leftrightarrow f\left( 2 \right) < f\left( { - 1} \right)\end{array}\).

Vậy \(f\left( 0 \right) > f\left( { - 1} \right) > f\left( 2 \right)\).

Chọn B.

Câu 36 (VD)

Phương pháp:

- Tìm tọa độ điểm \(M\) biểu diễn số phức \(z\).

- Tìm hàm số biểu thị mối liên hệ giữa tọa độ diểm \(M\) không phụ thuộc vào \(m\).

- Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Cách giải:

Ta có điểm biểu diễn của số phức z là \(M\left( {m - 2;{m^2} - 1} \right) \Rightarrow \left\{ \begin{array}{l}x = m - 2\\y = {m^2} - 1\end{array} \right.\)

\( \Rightarrow y + 1 = {\left( {x + 2} \right)^2}\)\( \Leftrightarrow y = {x^2} + 4x + 3\)

\( \Rightarrow \left( C \right):\,\,y = {x^2} + 4x + 3\) là 1 parabol.

Hoành độ giao điểm của đồ thị hàm số \(y = {x^2} + 4x + 3\) với trục hoành là: \({x^2} + 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 3\\x =  - 1\end{array} \right.\)

Diện tích hình phẳng cần tìm là \(S = \int\limits_{ - 3}^{ - 1} {\left| {{x^2} + 4x + 3} \right|dx} \)\( =  - \int\limits_{ - 3}^{ - 1} {\left( {{x^2} + 4x + 3} \right)}  = \frac{4}{3}.\)

Chọn A.

Câu 37 (VD)

Phương pháp:

- \({S_2}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{1}{4}{x^2}\), trục hoành, đường thẳng \(x = 0\) và \(x = 4\).

- Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

- Tính \({S_1} = {S_{OABC}} - {S_2}\).

- Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\).

Cách giải:

Ta thấy \({S_2}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{1}{4}{x^2}\), trục hoành, đường thẳng \(x = 0\) và \(x = 4\) nên \({S_2} = \int\limits_0^4 {\frac{1}{4}{x^2}dx}  = \frac{{16}}{3}.\)

Ta có: \(OABC\) là hình vuông cạnh \(4\) nên \({S_{ABCO}} = {4^2} = 16\).

\( \Rightarrow {S_1} = {S_{OABC}} - {S_2} = 16 - \frac{{16}}{3} = \frac{{32}}{3}.\)

Vậy \(\frac{{{S_1}}}{{{S_2}}} = \frac{{32}}{3}:\frac{{16}}{3} = 2.\)

Chọn D.

Câu 38 (VD) – Tích phân

Phương pháp:                   

- Biến đổi lượng giác: \(\frac{1}{{1 + \sin x}} = \frac{{1 - \sin x}}{{1 - {{\sin }^2}x}}\)\( = \frac{{1 - \sin x}}{{{{\cos }^2}x}} = \frac{1}{{{{\cos }^2}x}} - \frac{{\sin x}}{{{{\cos }^2}x}}\)

- Tách thành 2 tích phân, sử dụng công thức nguyên hàm cơ bản \(\int {\frac{1}{{{{\cos }^2}x}}dx}  = \tan x + C\) và phương pháp đổi biến.

- Đồng nhất hệ số tìm \(a,\,\,b,\,\,c\) và tính tổng \(a + b + c\).

Cách giải:

Ta có \(\frac{1}{{1 + \sin x}} = \frac{{1 - \sin x}}{{1 - {{\sin }^2}x}}\)\( = \frac{{1 - \sin x}}{{{{\cos }^2}x}} = \frac{1}{{{{\cos }^2}x}} - \frac{{\sin x}}{{{{\cos }^2}x}}\)

Khi đó:

\(\begin{array}{l}I = \int\limits_0^{\frac{\pi }{6}} {\frac{{dx}}{{1 + \sin x}}} \\ = \int\limits_0^{\frac{\pi }{6}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{{\sin x}}{{{{\cos }^2}x}}} \right)dx} \\ \Leftrightarrow I = \left. {\tan x} \right|_0^{\frac{\pi }{6}} - \int\limits_0^{\frac{\pi }{6}} {\frac{{\sin x}}{{{{\cos }^2}x}}dx} \\ \Leftrightarrow I = \frac{{\sqrt 3 }}{3} - {I_1}\end{array}\)

Đặt \(t = \cos x \Rightarrow dt =  - \sin xdx\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 1\\x = \frac{\pi }{6} \Rightarrow t = \frac{{\sqrt 3 }}{2}\end{array} \right.\).

Khi đó \({I_1} =  - \int\limits_1^{\frac{{\sqrt 3 }}{2}} {\frac{{dt}}{{{t^2}}}}  = \left. {\frac{1}{t}} \right|_1^{\frac{{\sqrt 3 }}{2}}\)\( = \frac{2}{{\sqrt 3 }} - 1 = \frac{{2\sqrt 3  - 3}}{3}\)

Vậy \(I = \frac{{\sqrt 3 }}{3} - \frac{{2\sqrt 3  - 3}}{3}\) \( = \frac{{\sqrt 3  - 2\sqrt 3  + 3}}{3} = \frac{{ - \sqrt 3  + 3}}{3}\)

Mà \(I = \frac{{a\sqrt 3  + b}}{c}\)\( \Rightarrow a =  - 1;\,\,b = 3;\,\,c = 3.\)

Vậy \(a + b + c\) \( =  - 1 + 3 + 3 = 5.\)

Chọn D.

Câu 39 (VD)

Phương pháp:

- Tìm bán kính của mặt cầu: Mặt cầu \(\left( S \right):\,\,{x^2} + {y^2} - 2ax - 2by - 2cz + d = 0\) có bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

- Tính khoảng cách từ tâm I của mặt cầu đến đường thẳng \(\left( \Delta  \right)\) dựa vào định lí Pytago.

- Sử dụng công thức tính khoảng cách từ \(I\) đến \(\Delta \) là: \(d\left( {I;\left( \Delta  \right)} \right) = \frac{{\left| {\left[ {\overrightarrow {IM} ;\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}}\) với \(\overrightarrow u \) là 1 VTCP của đường thẳng \(\Delta \), \(M\) là điểm bất kì trên đường thẳng \(\Delta \).

- Giải phương trình tìm \(m\).

Cách giải:

Mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 4x - 6y + m = 0\) có tâm \(I\left( { - 2;3;0} \right)\) và bán kính \(R = \sqrt {4 + 9 - m}  = \sqrt {13 - m} \) với \(m \le 13\).

Gọi \(O\) là trung điểm của \(AB \Rightarrow IO \bot AB\) và \(OA = OB = \frac{1}{2}AB = 4\).

Đường thẳng \(\left( \Delta  \right)\) có 1 vecto chỉ phương \(\overrightarrow u  = \left( {2;1;2} \right)\) và \(M\left( {4;3;3} \right) \in \left( \Delta  \right)\) bất kì.

Ta có: \(\overrightarrow {IM}  = \left( {6;0;3} \right)\)\( \Rightarrow \left[ {\overrightarrow {IM} ;\overrightarrow u } \right] = \left( { - 3; - 6;6} \right).\)

\( \Rightarrow d\left( {I;\left( \Delta  \right)} \right) = \frac{{\left| {\left[ {\overrightarrow {IM} ;\overrightarrow n } \right]} \right|}}{{\left| {\overrightarrow n } \right|}}\)\( = \frac{{\sqrt {9 + 36 + 36} }}{{\sqrt {4 + 1 + 4} }} = 3 = IO\)

Áp dụng định lí Pytago trong tam giác vuông \(OAI\) ta có:

\(\begin{array}{l}I{A^2} = I{O^2} + O{A^2}\\ \Leftrightarrow 13 - m = 9 + 16\\ \Leftrightarrow m =  - 12\,\,\left( {tm} \right)\end{array}\)

Chọn B.

Câu 40 (TH)

Phương pháp:

Áp dụng công thức \(s = \int {v\left( t \right)dt} \).

Cách giải:

Quãng đường mà ô tô đi được trong 15 giây cuối cùng là:

\(s = \int\limits_0^{15} {\left( { - 2t + 20} \right)dt} \)\( = \left. {\left( { - {t^2} + 20t} \right)} \right|_0^{15} = 75.\)

Chọn B.

Câu 41 (TH)

Phương pháp:

- \(\left\{ \begin{array}{l}AB \subset \left( Q \right)\\\left( Q \right) \bot \left( P \right)\end{array} \right. \Rightarrow \overrightarrow {{n_Q}}  = \left[ {\overrightarrow {AB} ;\overrightarrow {{n_P}} } \right]\) với \(\overrightarrow {{n_P}} ,\,\,\overrightarrow {{n_Q}} \) lần lượt là 1 VTPT của \(\left( P \right),\,\,\left( Q \right)\).

- Mặt phẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT là \(\overrightarrow n \left( {A;B;C} \right)\) là \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

Cách giải:

Mặt phẳng \(\left( P \right)\) có 1 VTPT là \(\overrightarrow {{n_P}}  = \left( {2; - 1;2} \right)\).

Ta có: \(A\left( {1;0; - 2} \right);B\left( { - 1; - 1;3} \right)\)\( \Rightarrow \overrightarrow {AB}  = \left( { - 2; - 1;5} \right).\)

\( \Rightarrow \left[ {\overrightarrow {{n_P}} ;\overrightarrow {AB} } \right] = \left( { - 3; - 14; - 4} \right).\).

Gọi \(\overrightarrow {{n_Q}} \) là 1 VTPT của mặt phẳng \(\left( Q \right)\) ta có: \(\left\{ \begin{array}{l}AB \subset \left( Q \right)\\\left( Q \right) \bot \left( P \right)\end{array} \right. \)

\(\Rightarrow \overrightarrow {{n_Q}}  = \left[ {\overrightarrow {AB} ;\overrightarrow {{n_P}} } \right] = \left( { - 3; - 14; - 4} \right)\) là 1 VTPT của mặt phẳng \(\left( Q \right)\).

Vậy phương trình mặt phẳng \(\left( Q \right)\) là:

\( - 3\left( {x - 1} \right) - 14\left( {y - 0} \right) - 4\left( {z + 2} \right) = 0\) \( \Leftrightarrow 3x + 14y + 4z + 5 = 0\)

Chọn D.

Câu 42 (VD)

Phương pháp:

Sử dụng phương pháp tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Cách giải:

Gọi \(I = \int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = f'\left( {\frac{x}{2}} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = 2f\left( {\frac{x}{2}} \right)\end{array} \right.\)

\(\begin{array}{l} \Rightarrow I = \left. {2xf\left( {\frac{x}{2}} \right)} \right|_0^4 - 2\int\limits_0^4 {f\left( {\frac{x}{2}} \right)dx} \\ \Leftrightarrow I = 8f\left( 2 \right) - 4\int\limits_0^4 {f\left( {\frac{x}{2}} \right)d\left( {\frac{x}{2}} \right)} \\ \Leftrightarrow I = 8.16 - 4\int\limits_0^8 {f\left( x \right)dx} \\ \Leftrightarrow I = 128 - 4.4 = 112.\end{array}\)

Chọn A.

Câu 43 (VD)

Phương pháp:

- Đổi biến \(t = {x^2} + 2\).

- Đồng nhất hệ số tìm \(a,\,\,b\).

Cách giải:

Đặt \({x^2} + 2 = t \Rightarrow 2xdx = dt\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 2\\x = 1 \Rightarrow t = 3\end{array} \right.\).

Khi đó ta có:

\(\begin{array}{l}I = \int\limits_0^1 {x{e^{{x^2} + 2}}dx}  = \frac{1}{2}\int\limits_2^3 {{e^t}dt} \\I = \left. {\frac{1}{2}{e^t}} \right|_2^3 = \frac{1}{2}\left( {{e^3} - {e^2}} \right)\end{array}\)

Mà \(I = \frac{a}{2}\left( {{e^b} - {e^c}} \right)\)\( \Rightarrow a = 1;\,\,\,b = 3;\,\,c = 2\)

Vậy \(a + b + c = 1 + 3 + 2 = 6.\)

Chọn D.

Câu 44 (VD)

Phương pháp:

- Số phức là một số thực khi nó có phần ảo bằng 0. Từ đó tìm \(m\) và suy ra số phức \(z\).

- Thay số phức \(z\) tìm được tính giá trị biểu thức đề  bài yêu cầu.

Cách giải:

Vì \(z = {m^2} - 3m + 3 + \left( {m - 2} \right)i\) là số thực nên \(m - 2 = 0 \Leftrightarrow m = 2.\)

Suy ra \(z = {m^2} - 3m + 3 = 1.\)

Vậy \(1 + z + {z^2} + ... + {z^{2019}}\)\( = 1 + 1 + 1 + ... + 1 = 2020\)  (có 2020 số 1).

Chon D.

Câu 45 (TH)

Phương pháp:

Hai đường thẳng \({d_1},\,\,{d_2}\) cắt nhau khi và chỉ khi \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {AM}  = 0\) với \(\overrightarrow {{u_1}} ,\,\,\overrightarrow {{u_2}} \) lần lượt là 1 VTCP của đường thẳng \({d_1},\,\,{d_2}\), \(M\) là điểm bất kì thuộc đường thẳng \({d_1}\).

Cách giải:

Đường thẳng \({d_1}\) có 1 VTCP là \(\overrightarrow {{u_1}}  = \left( {1; - 2;1} \right)\) và đi qua điểm \(M\left( {1;2;3} \right)\).

Ta có: \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow u } \right] = \left( { - 5;a - 2;1 + 2a} \right)\) và \(\overrightarrow {AM}  = \left( {0;2;4} \right)\).

Để \({d_1},\,\,{d_2}\) cắt nhau thì  \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right].\overrightarrow {AM}  = 0\).

\(\begin{array}{l} \Leftrightarrow  - 5.0 + \left( {a - 2} \right).2 + \left( {1 - 2a} \right).4 = 0\\ \Leftrightarrow 2a - 4 + 4 - 8a = 0\\ \Leftrightarrow a = 0.\end{array}\)

Chọn C.

Câu 46 (VD)

Phương pháp:

- Tìm điểm \(I\) sao cho \(\overrightarrow {IA}  + \overrightarrow {IB}  = 0\)

- Phân tích và chứng minh \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \).

- Khi đó \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) nhỏ nhất thì \(MI\) nhỏ nhất \( \Leftrightarrow M\) là hình chiếu của \(I\) trên \(\left( {Oxy} \right)\).

Cách giải:

Ta tìm điểm I sao cho \(\overrightarrow {IA}  + \overrightarrow {IB}  = 0\)\( \Rightarrow I\) là trung điểm của \(AB\).

Ta có \(A\left( {3;5; - 1} \right);B\left( {1;1;3} \right) \Rightarrow I\left( {2;3;1} \right).\)

Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI}  + \overrightarrow {IA}  + \overrightarrow {IB}  = 2\overrightarrow {MI} \) \( \Rightarrow \left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right| = \left| {2\overrightarrow {MI} } \right| = 2MI\).

Khi đó \({\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|_{\min }} \Leftrightarrow M{I_{\min }} \Leftrightarrow M\) là hình chiếu của \(I\) trên \(\left( {Oxy} \right)\).

Mà \(I\left( {2;3;1} \right) \Rightarrow M\left( {2;3;0} \right)\).

Chọn B.

Câu 47 (VD)

Phương pháp:

- Mặt cầu \(\left( S \right)\) tâm O và tiếp xúc với mặt phẳng \(\left( P \right):x - 2y + 2z + 9 = 0\) tại điểm \(H\left( {a;b;c} \right)\) nên \(H\) là hình chiếu của \(O\) lên \(\left( P \right)\).

- Viết phương trình đường thẳng \(OH\) đi qua \(O\) và vuông góc với \(\left( P \right)\).

- Tìm \(H = OH \cap \left( P \right)\).

- Xác định \(a,\,\,b,\,\,c\) và tính tổng.

Cách giải:

Vì mặt cầu \(\left( S \right)\) tâm O và tiếp xúc với mặt phẳng \(\left( P \right):x - 2y + 2z + 9 = 0\) tại điểm \(H\left( {a;b;c} \right)\) nên \(H\) là hình chiếu của \(O\) lên \(\left( P \right)\).

\( \Rightarrow OH \bot \left( P \right)\)\( \Rightarrow \overrightarrow {{u_{OH}}}  = \overrightarrow {{n_P}}  = \left( {1; - 2;2} \right)\).

Phương trình đường thẳng \(OH\) là: \(\left\{ \begin{array}{l}x = t\\y =  - 2t\\z = 2t\end{array} \right.\).

Vì \(H \in OH \Rightarrow H\left( {t; - 2t;2t} \right)\).

Lại có \(H \in \left( P \right) \Rightarrow t - 2.\left( { - 2t} \right) + 2.2t + 9 = 0\) \( \Leftrightarrow 9t + 9 = 0 \Leftrightarrow t =  - 1\).

\( \Rightarrow H\left( { - 1;2; - 2} \right)\).

\( \Rightarrow a =  - 1,\,\,b = 2,\,\,c =  - 2\)

Vậy \(a + b + c =  - 1 + 2 + \left( { - 2} \right) =  - 1.\)

Chọn B.

Câu 48 (VD)

Phương pháp:

- Gọi \(H = d \cap \left( P \right)\), khi đó \(H = d \cap d'\). Xác định tọa độ điểm \(H\).

- \(\left\{ \begin{array}{l}d' \subset \left( P \right)\\d \bot d'\end{array} \right. \Rightarrow \overrightarrow {{u_{d'}}}  = \left[ {\overrightarrow {{u_d}} ;\overrightarrow {{n_P}} } \right]\).

- Viết phương trình đường thẳng đi qua \(H\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTCP \(\overrightarrow u \left( {a;b;c} \right)\) là \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\).

Cách giải:

Gọi \(H = d \cap \left( P \right)\).

Vì \(H \in d \Rightarrow H\left( {2t;3 + t;2 - 3t} \right).\)

Mà \(H \in \left( P \right)\)\( \Rightarrow 2t - \left( {3 + t} \right) + 2\left( {2 - 3t} \right) - 6 = 0\)

\( \Leftrightarrow  - 5t - 5 = 0 \Leftrightarrow t =  - 1\)

\( \Rightarrow H\left( { - 2;2;5} \right)\)

Gọi đường thẳng cần tìm là \(d'\). Vì \(d' \subset \left( P \right)\) và \(d'\) cắt \(d\) nên \(H \in d'\) .

Gọi \(\overrightarrow {{u_d}}  = \left( {2;1; - 3} \right)\) là 1 VTCP của \(d\), \(\overrightarrow n \left( {1; - 1;2} \right)\) là 1 VTPT của \(\left( P \right)\).

Ta lại có: \(\left\{ \begin{array}{l}d' \subset \left( P \right)\\d \bot d'\end{array} \right.\)\( \Rightarrow \overrightarrow {{u_{d'}}}  = \left[ {\overrightarrow {{u_d}} ;\overrightarrow {{n_P}} } \right] = \left( { - 1; - 7; - 3} \right)\) là 1 VTCP của đường thẳng \(d'\).

\( \Rightarrow \left( {1;7;3} \right)\) cũng là 1 VTCP của đường thẳng \(d'\).

Vậy phương trình đường thẳng \(d'\) cần tìm là: \(\frac{{x + 2}}{1} = \frac{{y - 2}}{7} = \frac{{z - 5}}{3}\).

Chọn A.

Câu 49 (TH)

Phương pháp:

- Áp dụng công thức tính nguyên hàm cơ bản: \(\int {{x^n}dx}  = \frac{{{x^{n + 1}}}}{{n + 1}} + C\,\,\left( {n \ne  - 1} \right)\) để tìm \(F\left( x \right).\)

- Sử dụng giả thiết \(F\left( 1 \right) = 1\) để tìm hằng số \(C\).

- Suy ra hàm số \(F\left( x \right)\) hoàn chỉnh và tính \(F\left( { - 1} \right)\).

Cách giải:

Ta có \(F\left( x \right) = \int {f\left( x \right) = \int {\left( {{x^2} + x} \right)dx} } \)\( \Rightarrow F\left( x \right) = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + C\)

Mà \(F\left( 1 \right) = 1 \Leftrightarrow \frac{1}{3} + \frac{1}{2} + C = 1\)\( \Leftrightarrow C = \frac{1}{6}.\)

\( \Rightarrow F\left( x \right) = \frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + \frac{1}{6}.\)

Vậy \(F\left( { - 1} \right) =  - \frac{1}{3} + \frac{1}{2} + \frac{1}{6} = \frac{1}{3}.\)

Chọn A.

Câu 50 (VD)

Phương pháp:

- Đặt \(z = a + bi \Rightarrow \overline z  = a - bi\).

- Thay vào biểu thức, nhân chéo sau đó tìm \(a,\,\,b\).

- Suy ra số phức \(z\) và tính \({\rm{w}} = 1 + z + {z^2}\).

Cách giải:

Đặt \(z = a + bi \Rightarrow \overline z  = a - bi\).

Theo bài ra ta có:

\(\begin{array}{l}\,\,\,\,\,\frac{{5\left( {\overline z  + i} \right)}}{{z + 1}} = 2 - i\\ \Rightarrow \frac{{5\left( {a - bi + i} \right)}}{{a + bi + 1}} = 2 - i\\ \Leftrightarrow 5\left[ {a - \left( {b - 1} \right)i} \right] \\= \left( {a + 1 + bi} \right)\left( {2 - i} \right)\\ \Leftrightarrow 5a - 5\left( {b - 1} \right)i\\= 2\left( {a + 1} \right) + b + \left( {2b - a - 1} \right)i\\ \Leftrightarrow \left\{ \begin{array}{l}5a = 2a + 2 + b\\5 - 5b = 2b - a - 1\end{array} \right. \\\Rightarrow a = b = 1\\ \Rightarrow z = 1 + i \Rightarrow {z^2} = 2i\\ \Rightarrow {\rm{w}} = 1 + z + {z^2} = 1 + 1 + i + 2i \\= 2 + 3i\end{array}\)

Vậy \(\left| {\rm{w}} \right| = \sqrt {{2^2} + {3^2}}  = \sqrt {13} .\)

Chọn C.

Nguồn: Sưu tầm

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"