Câu 1
Tính giá trị của biểu thức:
Phương pháp giải:
- Muốn cộng hoặc trừ các phân số cùng mẫu số, ta cộng hoặc trừ tử số với nhau và giữ nguyên mẫu số.
Muốn cộng hoặc trừ hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số rồi cộng hoặc trừ hai phân số đã quy đồng.
Lời giải chi tiết:
a) $\frac{5}{3} + \frac{{11}}{6} = \frac{{10}}{6} + \frac{{11}}{6} = \frac{{21}}{6}$
b) $\frac{7}{{10}} + \frac{9}{{10}} + \frac{3}{{10}} = \frac{{7 + 9 + 3}}{{10}} = \frac{{19}}{{10}}$
c) $\frac{3}{2} - \frac{1}{4} = \frac{6}{4} - \frac{1}{4} = \frac{5}{4}$ d) $\frac{{15}}{{16}} - \frac{5}{{16}} - \frac{3}{{16}} = \frac{{15 - 5 - 3}}{{16}} = \frac{7}{{16}}$
Câu 2
Tính rồi rút gọn:
Phương pháp giải:
Muốn cộng hoặc trừ hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số rồi cộng hoặc trừ hai phân số đã quy đồng.
Lời giải chi tiết:
a) $\frac{{14}}{9} + \frac{2}{3} - \frac{5}{9} = \frac{{14}}{9} + \frac{6}{9} - \frac{5}{9} = \frac{{15}}{9} = \frac{5}{3}$
b) $\frac{6}{7} - \frac{5}{{14}} + \frac{3}{{14}} = \frac{{12}}{{14}} - \frac{5}{{14}} + \frac{3}{{14}} = \frac{{10}}{{14}} = \frac{5}{7}$
c) $\frac{{11}}{6} - \left( {\frac{9}{{12}} + \frac{5}{6}} \right) = \frac{{11}}{6} - \left( {\frac{9}{{12}} + \frac{{10}}{{12}}} \right)$$ = \frac{{22}}{{12}} - \frac{{19}}{{12}}$ = $\frac{3}{{12}} = \frac{1}{4}$
Câu 3
<, >, = ?
Phương pháp giải:
Tính kết quả của mỗi vế rồi điền dấu thích hợp
Lời giải chi tiết:
+) $\frac{1}{3} + \frac{7}{9}$ ...... $\frac{{11}}{9}$
Ta có: $\frac{1}{3} + \frac{7}{9} = \frac{{10}}{9}$ , mà $\frac{{10}}{9} < \frac{{11}}{9}$
Vậy $\frac{1}{3} + \frac{7}{9}$ < $\frac{{11}}{9}$
+) $\frac{7}{8} - \frac{3}{{16}}$ ..... $\frac{9}{{16}}$
Ta có: $\frac{7}{8} - \frac{3}{{16}} = \frac{{11}}{{16}}$, mà $\frac{{11}}{{16}} > \frac{9}{{16}}$
Vậy $\frac{7}{8} - \frac{3}{{16}}$ > $\frac{9}{{16}}$
+) $\frac{4}{{15}} + \frac{3}{5}$ ...... $\frac{{23}}{{15}} - \frac{2}{3}$
Ta có: $\frac{4}{{15}} + \frac{3}{5} = \frac{{13}}{{15}}$ ; $\frac{{23}}{{15}} - \frac{2}{3} = \frac{{13}}{{15}}$
Vậy $\frac{4}{{15}} + \frac{3}{5}$ = $\frac{{23}}{{15}} - \frac{2}{3}$
Câu 4
Lớp 4A có $\frac{1}{3}$ số học sinh chơi cầu lông, $\frac{4}{9}$số học sinh chơi bóng đá, số học sinh còn lại chơi cờ vua. Hỏi số học sinh chơi cờ vua bằng bao nhiêu phần số học sinh của lớp 4A? Biết rằng mỗi học sinh chỉ tham gia một môn thể thao.
Phương pháp giải:
Số phần học sinh của lớp 4A chơ cờ vua = 1 – số phần số học sinh chơi cầu lông – số phần số học sinh chơi bóng đá
Lời giải chi tiết:
Số học sinh chơi cờ vua chiếm số phần học sinh của lớp 4A là:
$1 - \frac{1}{3} - \frac{4}{9} = \frac{2}{9}$(số học sinh)
Đáp số: $\frac{2}{9}$số học sinh