tìm y ,x sao cho x+y=xy=x:y (y khác 0)

tìm y ,x sao cho x+y=xy=x:y (y khác 0)
Câu trả lời này dùng AI, hãy kiểm tra lại trước khi sử dụng
Để giải bài toán tìm y, x sao cho x + y = xy = x : y, với y khác 0, ta sẽ bắt đầu phân tích từng điều kiện một.

1. Điều kiện x + y = xy: Ta có thể viết lại điều kiện này như sau:
xy - x - y = 0.
Đây có thể được xem như một phương trình bậc 2 với biến x. Nếu ta biến đổi, ta có:
x(y - 1) = y.
Từ đó, suy ra:
x = y / (y - 1), nếu y khác 1 (vì y khác 1 để không chia cho 0).

2. Điều kiện x : y = xy: Điều này có thể hiểu là x / y = xy, hay viết lại là:
x = xy^2.
Thay x từ bước trước vào, ta có:
y / (y - 1) = y^2(y / (y - 1)).
Phương trình này là một phương trình liên quan đến y. Nhân cả hai bên với (y - 1) để bỏ đi mẫu số, ta có:
y = y^2(y).
Rút gọn lại, ta có:
y = y^3.
Điều này có nghĩa là y^3 - y = 0 hay y(y^2 - 1) = 0.

Từ đây, ta có hai trường hợp:
- y = 0 (không thỏa mãn điều kiện y khác 0).
- y^2 - 1 = 0, tức là:
y = 1 hoặc y = -1.

Tuy nhiên, nếu y = 1 thì từ x = y / (y - 1) sẽ dẫn đến không xác định. Vậy chỉ có y = -1 là thỏa mãn.

3. Tìm x tương ứng với y = -1:
Thay y = -1 vào x = y / (y - 1):
x = -1 / (-1 - 1) = -1 / -2 = 1/2.

Vậy cặp (x, y) thỏa mãn điều kiện đề bài là (1/2, -1).
Đăng phản hồi