Giải bài 8 trang 58 SGK Toán 7 tập 2 - Chân trời sáng tạo

2024-09-14 06:23:19

Đề bài

Cho góc xOy. Lấy hai điểm A, B thuộc tia Ox sao cho OA < OB. Lấy hai điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:

a) AD = BC

b) \(\Delta EAB=\Delta ECD\)

c) OE là tia phân giác của góc xOy.

Phương pháp giải - Xem chi tiết

Sử dụng các trường hợp bằng nhau của tam giác: c-c-c; c-g-c; g-c-g để chứng minh các tam giác bằng nhau rồi suy ra các cạnh tương ứng bằng nhau hoặc các góc tương ứng bằng nhau

Lời giải chi tiết

a) Xét \(\Delta OAD\) và \(\Delta OCB\), ta có :

OD = OB

\(\widehat{A}\) chung

OA = OC 

\(\Rightarrow \Delta OAD=\Delta OCB\) (c-g-c )

\( \Rightarrow AD = BC\)(2 cạnh tương ứng )

b) Vì \(\Delta OAD=\Delta OCB\) nên \(\widehat{OAD}=\widehat{OCB}; \widehat{D}=\widehat{B}\) ( 2 góc tương ứng)

Mà \(\widehat{OAD}+\widehat{BAD}=180^0\) ( 2 góc kề bù)

\(\widehat{OCB}+\widehat{BCD}=180^0\) ( 2 góc kề bù)

Do đó, \(\widehat{BAD}=\widehat{BCD}\)

Vì \(OA+AB=OB; OC+CD=OD\)

Mà \(OC = OA, OD = OB\)

\(\Rightarrow AB=CD\)

Xét \(\Delta EAB\) và \(\Delta ECD\), ta có:

\(\widehat {ABE} = \widehat {CDE}\)

\(AB = CD\)

\(\widehat {BAE} = \widehat {DCE}\)

\(\Rightarrow \Delta EAB=\Delta ECD\) (g-c-g)

c) Vì \(\Delta EAB=\Delta ECD\) nên EB = ED ( 2 cạnh tương ứng)

Xét \(\Delta OBE\) và \(\Delta ODE\), ta có :

 EB = ED

OB = OD

OE chung

\( \Rightarrow \Delta OBE=\Delta ODE \)  (c.c.c)

\( \Rightarrow \widehat{BOE}=\widehat{DOE}\) ( 2 góc tương ứng)

\( \Rightarrow \) OE là phân giác \(\widehat {xOy}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"