Giải Bài 7.25 trang 34 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

2024-09-14 06:31:21

Đề bài

Tìm số tự nhiên n sao cho đa thức \(1,2{x^5} - 3{x^4} + 3,7{x^2}\) chia hết cho \({x^n}\).

Phương pháp giải - Xem chi tiết

Đa thức đã cho chia hết cho \({x^n}\) nếu từng hạng tử của nó chia hết cho \({x^n}\) nếu từng hạng tử của nó chia hết cho \({x^n}\).

Lời giải chi tiết

Đa thức đã cho chia hết cho \({x^n}\) nếu từng hạng tử của nó chia hết cho \({x^n}\) nếu từng hạng tử của nó chia hết cho \({x^n}\).

\( \Rightarrow \left\{ \begin{array}{l}{x^5} \vdots {x^n}\\{x^4} \vdots {x^n}\\{x^2} \vdots {x^n}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}n \le 5\\n \le 4\\n \le 2\end{array} \right. \Rightarrow n \le 2 \Rightarrow n \in \left\{ {0;1;2} \right\}\) 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"