Giải bài 1.29 trang 21 SGK Toán 8 tập 1 - Kết nối tri thức

2024-09-14 08:18:56

Đề bài

Chứng minh đẳng thức sau: \(\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right) = \left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\).

Phương pháp giải - Xem chi tiết

Thực hiện phép nhân đa thức với đa thức ở 2 vế.

Muốn nhân đơn thức với đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau. Sau đó, nhóm các hạng tử đồng dạng để thu gọn đa thức.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right)\\ = 2x.2{x^2} + 2x.xy - 2x.{y^2} + y.2{x^2} + y.xy - y.{y^2}\\ = 4{x^3} + 2{x^2}y - 2x{y^2} + 2{x^2}y + x{y^2} - {y^3}\\ = 4{x^3} + \left( {2{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} + x{y^2}} \right) - {y^3}\\ = 4{x^3} + 4{x^2}y - x{y^2} - {y^3}\\\left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\\ = 2x.2{x^2} + 2x.3xy + 2x.{y^2} - y.2{x^2} - y.3xy - y.{y^2}\\ = 4{x^3} + 6{x^2}y + 2x{y^2} - 2{x^2}y - 3x{y^2} - {y^3}\\ = 4{x^3} + \left( {6{x^2}y - 2{x^2}y} \right) + \left( {2x{y^2} - 3x{y^2}} \right) - {y^3}\\ = 4{x^3} + 4{x^2}y - x{y^2} - {y^3}\end{array}\)

Do đó, \(\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right) = \left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\) 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"