HĐ1
Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D.
Khi lấy B và C sao cho AB = AC (H.4.20a), hãy so sánh tỉ số
Phương pháp giải:
Vận dụng tính chất đường phân giác của tam giác.
Lời giải chi tiết:
Theo đề bài, At là tia phân giác của góc xAy hay AD là tia phân giác của góc BAC.
Tam giác ABC cân tại A (vì AB = AC) có AD là tia phân giác của góc BAC nên AD cũng là đường trung tuyến của tam giác ABC.
Suy ra D là trung điểm của cạnh BC hay DB = DC nên
Vì AB = AC nên
Vậy khi lấy B và C sao cho AB = AC thì
HĐ2
Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D
Khi lấy B và C sao cho AB = 2 cm và AC = 4 cm (H.4.20b), hãy dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC rồi so sánh hai tỉ số
Phương pháp giải:
Dùng thước đo các khoảng cách và tính tỉ số
Lời giải chi tiết:
Dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC, ta được:
DB = 12 mm = 1,2 cm và DC = 24 mm = 2,4 cm.
Khi đó,
Vậy khi lấy B và C sao cho AB = 2 cm và AC = 4 cm thì
Luyện tập
Tính độ dài x trên Hình 4.23
Phương pháp giải:
Vận dụng tính chất đường phân giác trong tam giác
Lời giải chi tiết:
Trong Hình 4.23 có
Áp dụng tính chất đường phân giác của tam giác, ta có:
Suy ra:
Vậy x = 7,2 (đvđd).