Giải mục 1 trang 36, 37 SGK Toán 8 tập 1 – Chân trời sáng tạo

2024-09-14 08:24:43

HĐ1

Một tấm bạt lớn hình chữ nhật có chiều dài \(a\) (m), chiều rộng \(b\) (m) được ghép bởi các tấm bạt bé hình chữ nhật có chiều dài và chiều rộng đều bằng \(\dfrac{1}{k}\)  chiều dài, chiều rộng của tấm bạt lớn. Tính diện tích của mỗi tấm bạt bé theo \(a\), \(b\) và \(k\).

Phương pháp giải:

Sử dụng công thức tính diện tích hình chữ nhật

Lời giải chi tiết:

Chiều dài tấm bạt bé là: \(a.\dfrac{1}{k} = \dfrac{a}{k}\) (m)

Chiều rộn tấm bạt bé là: \(b.\dfrac{1}{k} = \dfrac{b}{k}\) (m)

Diện tích của mỗi tấm bạt bé là: \(\dfrac{a}{k} \cdot \dfrac{b}{k} = \dfrac{{ab}}{{{k^2}}}\) (\({m^2}\))


TH 1

Tính:

a) \(\dfrac{{3{a^2}}}{{10{b^3}}} \cdot \dfrac{{15b}}{{9{a^4}}}\)                                                            b) \(\dfrac{{x - 3}}{{{x^2}}} \cdot \dfrac{{4x}}{{{x^2} - 9}}\)

c) \(\dfrac{{{a^2} - 6a + 9}}{{{a^2} + 3a}} \cdot \dfrac{{2a + 6}}{{a - 3}}\)                                             d) \(\dfrac{{x + 1}}{x} \cdot \left( {x + \dfrac{{2 - {x^2}}}{{{x^2} - 1}}} \right)\)

Phương pháp giải:

Tìm ĐKXĐ

Sử dụng quy tắc nhân đa hai phân thức

Lời giải chi tiết:

a) ĐKXĐ: \(a,b \ne 0\)

\(\dfrac{{3{a^2}}}{{10{b^3}}} \cdot \dfrac{{15b}}{{9{a^4}}}\) \( = \dfrac{{3{a^2}.15b}}{{10{b^3}.9{a^4}}} = \dfrac{{45{a^2}b}}{{90{a^4}{b^3}}} = \dfrac{1}{{2{a^2}{b^2}}}\)

b) ĐKXĐ: \(x \ne 0;\;x \ne  \pm 3\)

\(\dfrac{{x - 3}}{{{x^2}}} \cdot \dfrac{{4x}}{{{x^2} - 9}}\) \( = \dfrac{{\left( {x - 3} \right).4x}}{{{x^2}.\left( {{x^2} - 9} \right)}} = \dfrac{{\left( {x - 3} \right).4x}}{{{x^2}\left( {x - 3} \right)\left( {x + 3} \right)}} = \dfrac{4}{{x\left( {x + 3} \right)}}\)

c) ĐKXĐ: \(x \ne 0;x \ne  \pm 3\)

\(\dfrac{{{a^2} - 6a + 9}}{{{a^2} + 3a}} \cdot \dfrac{{2a + 6}}{{a - 3}}\) \( = \dfrac{{{{\left( {a - 3} \right)}^2}.2.\left( {a + 3} \right)}}{{a.\left( {a + 3} \right).\left( {a - 3} \right)}} = \dfrac{{2\left( {a - 3} \right)}}{a}\)

d)  ĐKXĐ: \(x \ne 0;x \ne 1\)

\(\dfrac{{x + 1}}{x} \cdot \left( {x + \dfrac{{2 - {x^2}}}{{{x^2} - 1}}} \right)\) \( = \dfrac{{x + 1}}{x} \cdot \left[ {\dfrac{{x\left( {{x^2} - 1} \right)}}{{{x^2} - 1}} + \dfrac{{2 - {x^2}}}{{{x^2} - 1}}} \right] = \dfrac{{x + 1}}{x} \cdot \left[ {\dfrac{{{x^3} - x + 2 - {x^2}}}{{{x^2} - 1}}} \right]\) \( = \dfrac{{x + 1}}{x} \cdot \dfrac{{{x^3} - {x^2} - x + 2}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \dfrac{{{x^3} - {x^2} - x + 2}}{{x\left( {x - 1} \right)}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"