Đề bài
Số lượng học sinh tham gia Câu lạc bộ Cờ vua của một trường được biểu diễn ở biểu đồ sau:
Chọn ngẫu nhiên 1 học sinh trong Câu lạc bộ Cờ vua của trường đó. Tính xác suất các biến cố:
\(A\): “Học sinh được chọn là nữ”.
\(B\): “Học sinh được chọn học lớp 8”.
\(C\): “Học sinh được chọn là nam và không học lớp 7”.
Phương pháp giải - Xem chi tiết
Khi tất cả các kết quả của một trò chơi hay phép thử ngẫu nghiệm đều có khả năng xảy ra bằng nhau thì xác suất xảy ra biến cố \(A\) là tỉ số giữ số kết quả thuận lời cho \(A\) và tổng số kết quả có thể xảy ra của phép thử, tức là:
\(P\left( A \right) = \)Số kết quả thuận lợi : Số kết quả có thể xảy ra.
Lời giải chi tiết
Tổng số học sinh tham gia câu lạc bộ là:
\(8 + 9 + 6 + 8 + 4 + 5 + 4 + 6 = 50\) (học sinh)
- Biến cố \(A\) xảy ra khi bạn học sinh chọn được là nữ.
Số học sinh nữ tham gia câu lạc bộ là:
\(9 + 8 + 5 + 6 = 28\) (học sinh)
Xác suất của biến có \(A\) là:
\(P\left( A \right) = \frac{{28}}{{50}} = \frac{{14}}{{25}}\)
- Biến cố \(B\) xảy ra khi bạn học sinh chọn được là học sinh lớp 8.
Số học sinh lớp 8 trong câu lạc bộ là:
\(4 + 5 = 9\)(học sinh)
Xác suất của biến có \(B\) là:
\(P\left( B \right) = \frac{9}{{50}}\)
- Biến cố \(C\) xảy ra khi bạn học sinh chọn được là nam và không học lớp 7.
Số học sinh câu lạc bộ là nam và không học lớp 7 là:
\(8 + 6 + 4 = 18\)
Xác suất của biến có \(C\) là:
\(P\left( C \right) = \frac{{18}}{{50}} = \frac{9}{{25}}\)