Giải bài 3 trang 17 SGK Toán 8 tập 1 - Cánh diều

2024-09-14 08:29:38

Đề bài

Rút gọn biểu thức:

\(a)\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\)                        

b) \(\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\)

c) \(\left( {4{\rm{x}} - 1} \right)\left( {6y + 1} \right) - 3{\rm{x}}\left( {8y + \dfrac{4}{3}} \right)\)          

d) \(\left( {x + y} \right)\left( {x - y} \right) + \left( {x{y^4} - {x^3}{y^2}} \right):\left( {x{y^2}} \right)\)

Phương pháp giải - Xem chi tiết

Áp dụng các quy tắc nhân đa thức với đa thức, nhân đơn thức với đơn thức để rút gọn các biểu thức.

Lời giải chi tiết

a)

\(\begin{array}{l}\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\\ = x.{x^2} + x.xy + x.{y^2} - y.{x^2} - y.xy - y.{y^2}\\ = {x^3} + {x^2}y + x{y^2} - {x^2}y - x{y^2} - {y^3}\\ = {x^3} - {y^3}\end{array}\)

b)

\(\begin{array}{l}\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\\ = x.{x^2} + x.\left( { - xy} \right) + x{y^2} + y.{x^2} + y.\left( { - xy} \right) + y.{y^2}\\ = {x^3} - {x^2}y + x{y^2} + {x^2}y - x{y^2} + {y^3}\\ = {x^3} + {y^3}\end{array}\)

c)

\(\begin{array}{l}\left( {4{\rm{x}} - 1} \right)\left( {6y + 1} \right) - 3{\rm{x}}\left( {8y + \dfrac{4}{3}} \right)\\ = 4{\rm{x}}.6y + 4{\rm{x}}.1 - 1.6y - 1.1 - 3{\rm{x}}.8y - 3{\rm{x}}.\dfrac{4}{3}\\ = 24{\rm{x}}y + 4{\rm{x}} - 6y - 1 - 24{\rm{x}}y - 4{\rm{x}}\\ =  - 6y - 1\end{array}\)

d)

\(\begin{array}{l}\left( {x + y} \right)\left( {x - y} \right) + \left( {x{y^4} - {x^3}{y^2}} \right):\left( {x{y^2}} \right)\\ = x.x + x.\left( { - y} \right) + y.x + y.\left( { - y} \right) + \left( {x{y^4}} \right):\left( {x{y^2}} \right) + \left( { - {x^3}{y^2}} \right):\left( {x{y^2}} \right)\\ = {x^2} - xy + xy - {y^2} + {y^2} - x^2\\ = 0\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"