Giải bài 2 trang 34 vở thực hành Toán 8

2024-09-14 08:39:13

Đề bài

Viết các biểu thức sau dưới dạng tổng hay hiệu hai lập phương:

a) \((x + 4)({x^2} - 4x + 16)\).

b) \((4{x^2} + 2xy + {y^2})(2x - y)\).

Phương pháp giải - Xem chi tiết

a) Sử dụng hằng đẳng thức tổng hai lập phương: \({a^3} + {b^3} = (a + b)\left( {{a^2} - ab + {b^2}} \right)\)

b) Sử dụng hằng đẳng thức hiệu hai lập phương: \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)

Lời giải chi tiết

a) \(27 + 54x + 36{x^2}\; + 8{x^3}\; = {3^3}\; + {3.3^2}.2x + 3.3.{\left( {2x} \right)^2}\; + {\left( {2x} \right)^3}\)

\( = {\left( {3 + 2x} \right)^3}\).

b) \(64{x^3}\;-144{x^2}y + 108x{y^2}\;-27{y^3}\)

\(\begin{array}{*{20}{l}}{ = {{\left( {4x} \right)}^3}\;-3.{{\left( {4x} \right)}^2}.3y + 3.4x.{{\left( {3y} \right)}^2}\;-{{\left( {3y} \right)}^3}}\\{ = {{\left( {4x-3y} \right)}^3}.}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"