Giải bài 2 trang 38 vở thực hành Toán 8

2024-09-14 08:39:15

Đề bài

Phân tích các đa thức sau thành nhân tử:

a) \({x^2} - 9 + xy + 3y.\)

b) \({x^2}y + {x^2} + xy - 1.\)

Phương pháp giải - Xem chi tiết

Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử và sử dụng hằng đẳng thức hiệu hai bình phương \({a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\) sau đó đặt nhân tử chung.

Lời giải chi tiết

a) \({x^2} - 9 + xy + 3y = \left( {{x^2} - 9} \right) + (xy + 3y)\)

\( = (x - 3)(x + 3) + y(x + 3) = (x - 3 + y)(x + 3)\)

b) \({x^2}y + {x^2} + xy - 1 = \left( {{x^2}y + xy} \right) + \left( {{x^2} - 1} \right)\)

\( = xy(x + 1) + (x - 1)(x + 1) = (xy + x - 1)(x + 1)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"