Giải bài 3 trang 121 vở thực hành Toán 8 tập 2

2024-09-14 08:42:32

Đề bài

Cho đa thức: \(f(x) = {x^2} - 15{\rm{x}} + 56\)

a) Phân tích đa thức thành nhân tử.

b) Tìm x sao cho f(x) = 0

Phương pháp giải - Xem chi tiết

Phân tích đa thức thành nhân tử

Lời giải chi tiết

a)

\(\begin{array}{l}f(x) = {x^2} - 15{\rm{x}} + 56\\f(x) = {x^2} - 7{\rm{x}} - 8{\rm{x  +  }}56\\f(x) = x\left( {x - 7} \right) - 8\left( {x - 7} \right)\\f(x) = \left( {x - 7} \right)\left( {x - 8} \right)\end{array}\)

b) f(x) = (x – 7)(x - 8) = 0 khi x – 8 = 0 hoặc x – 7 = 0, tức là khi x = 8 hoặc y = 8 thì f(x) = 0.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"