Giải bài 10.16 trang 79 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

2024-09-14 08:48:22

Đề bài

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 6cm, chiều cao 8cm như Hình 10.19. Tính thể tích hình chóp, biết \(\sqrt {27}  \approx 5,2\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về thể tích của hình chóp tam giác đều: Thể tích của hình chóp tam giác đều bằng \(\frac{1}{3}\) tích của diện tích đáy với chiều cao của nó.

Lời giải chi tiết

Kẻ các đường cao IC, BE của tam giác đều ABC. Gọi O là giao điểm của BE và IC, khi đó SO là đường cao của hình chóp tam giác đều S.ABC.

Tam giác ABC là tam giác đều nên \(AB = BC = 6cm\), CI là đường cao đồng thời là đường trung tuyến. Do đó, \(BI = \frac{1}{2}AB = 3cm\).

Áp dụng định lí Pythagore vào tam giác CBI vuông tại I có: \(B{I^2} + I{C^2} = B{C^2}\)

\(I{C^2} = B{C^2} - B{I^2} = {6^2} - {3^2} = 27\)  nên \(BI = \sqrt {27}  \approx 5,2cm\)

Diện tích tam giác ABC là: \(S = \frac{1}{2}IC.AB \approx \frac{1}{2}.5,2.6 = 15,6\left( {c{m^2}} \right)\)

Thể tích hình chóp là: \(V = \frac{1}{3}.15,6.8 = 41,6\left( {c{m^3}} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"