Giải bài 35 trang 103 sách bài tập toán 8 - Cánh diều

2024-09-14 08:56:03

Đề bài

Cho hình vuông ABCDAB=12cm. Trên cạnh CD lấy điểm E sao cho DE=5cm. Tia phân giác của góc BAE cắt BC tại F. Trên tia đối của tia BC lấy điểm M sao cho BM=DE.

a)     Chứng minh AE=AM=DE

b)    Tính độ dài BF.

Phương pháp giải - Xem chi tiết

Trong một hình vuông,

-         Các cạnh đối song song

-         Hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường.

-         Hai đường chéo là các đường phân giác của các góc ở đỉnh.

Lời giải chi tiết

a)     ΔADE=ΔABM(c.g.c)

Suy ra AE=AMDAE^=BAM^.

Do AF là tia phân giác của BAE^ nên EAF^=BAF^.

Suy ra DAE^+EAF^=BAM^+BAF^ hay DAF^=MAF^.

DAF^=MFA^ (hai góc so le trong) , suy ra MFA^=MAF^

Do đó, tam giác MAF cân tại M. Suy ra AM=FM

AE=AM, suy ra AE=AM=FM.

b)    Trong tam giác ADE vuông tại D, ta có: AE2=AD2+DE2

Suy ra AE=13cm. Mà FM=AE, suy ra FM=13cm.

Ta có: FM=BM+BF. Mà BM=DE=5cmFM=13cm, suy ra BF=8cm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"