Bài 26 trang 9 SBT toán 8 tập 1

2024-09-14 09:03:30

Phân tích thành nhân tử:

LG a

\(\) \({x^2} - 9\)

Phương pháp giải:

Sử dụng hằng đẳng thức:

\(A^2-B^2=(A-B)(A+B)\)

Lời giải chi tiết:

\(\) \({x^2} – 9= {x^2} - {3^2} = \left( {x + 3} \right)\left( {x - 3} \right)\)


LG b

\(\) \(4{x^2} - 25\)

Phương pháp giải:

Sử dụng hằng đẳng thức:

\(A^2-B^2=(A-B)(A+B)\)

Lời giải chi tiết:

\(\) \(4{x^2} – 25\) \( = {\left( {2x} \right)^2} - {5^2} = \left( {2x + 5} \right)\left( {2x - 5} \right)\)


LG c

\(\) \({x^6} - {y^6}\)

Phương pháp giải:

Sử dụng các hằng đẳng thức:

\({A^3} + {B^3} = \left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right)\)

\({A^3} - {B^3} = \left( {A - B} \right)\left( {{A^2} + AB + {B^2}} \right)\)

Lời giải chi tiết:

\(\) \({x^6} - {y^6}\)\( = {\left( {{x^3}} \right)^2} - {\left( {{y^3}} \right)^2}\)\( = \left( {{x^3} + {y^3}} \right)\left( {{x^3} - {y^3}} \right)  \)\( = \left( {x + y} \right)\left( {{x^2} - xy + y} \right)\)\(\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"