Bài 14 trang 27 SBT toán 8 tập 1

2024-09-14 09:03:57

Quy đồng mẫu thức các phân thức:

LG a

\(\displaystyle {{7x - 1} \over {2{x^2} + 6x}},{{5 - 3x} \over {{x^2} - 9}}\)

Phương pháp giải:

 Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

\(2{x^2} + 6x = 2x\left( {x + 3} \right);\) 

    \({x^2} - 9 = \left( {x + 3} \right)\left( {x - 3} \right)\)

MTC \(= 2x\left( {x + 3} \right)\left( {x - 3} \right)\)

\(\displaystyle{{7x - 1} \over {2{x^2} + 6x}} = {{7x - 1} \over {2x\left( {x + 3} \right)}}\)\(\,\displaystyle  = {{\left( {7x - 1} \right)\left( {x - 3} \right)} \over {2x\left( {x + 3} \right)\left( {x - 3} \right)}} \)

\(\displaystyle{{5 - 3x} \over {{x^2} - 9}} = {{5 - 3x} \over {\left( {x + 3} \right)\left( {x - 3} \right)}} \)\(\,\displaystyle = {{2x\left( {5 - 3x} \right)} \over {2x\left( {x + 3} \right)\left( {x - 3} \right)}}  \)


LG b

\(\displaystyle {{x + 1} \over {x - {x^2}}},{{x + 2} \over {2 - 4x + 2{x^2}}}\)

Phương pháp giải:

 Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

+) \(x - {x^2} = x\left( {1 - x} \right)\);

+) \(2 - 4x + 2{x^2} = 2\left( {1 - 2x + {x^2}} \right) \)\(\,= 2{\left( {1 - x} \right)^2}\)

MTC \(= 2x{\left( {1 - x} \right)^2}\)

\(\displaystyle  {{x + 1} \over {x - {x^2}}} = {{x + 1} \over {x\left( {1 - x} \right)}} \)\(\,\displaystyle= {{\left( {x + 1} \right).2\left( {1 - x} \right)} \over {x\left( {1 - x} \right).2\left( {1 - x} \right)}} = {{2{{\left( {1 - x^2} \right)}}} \over {2x{{\left( {1 - x} \right)}^2}}}  \)

\(\displaystyle {{x + 2} \over {2 - 4x + 2{x^2}}} = {{x + 2} \over {2{{\left( {1 - x} \right)}^2}}} \)\(\,\displaystyle = {{\left( {x + 2} \right).x} \over {2x{{\left( {1 - x} \right)}^2}}}  \)


LG c

\(\displaystyle {{4{x^2} - 3x + 5} \over {{x^3} - 1}},{{2x} \over {{x^2} + x + 1}},{6 \over {x - 1}}\)

Phương pháp giải:

 Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

Ta có \({x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\)

MTC \(= {x^3} - 1\)

\(\displaystyle {{4{x^2} - 3x + 5} \over {{x^3} - 1}}\);

\(\displaystyle {{2x} \over {{x^2} + x + 1}} = {{2x\left( {x - 1} \right)} \over {\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}\)\(\,\displaystyle = {{2x\left( {x - 1} \right)} \over {{x^3} - 1}}  \)

\(\displaystyle {6 \over {x - 1}} = {{6\left( {{x^2} + x + 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} \)\(\,\displaystyle= {{6\left( {{x^2} + x + 1} \right)} \over {{x^3} - 1}}  \)


LG d

\(\displaystyle {7 \over {5x}},{4 \over {x - 2y}},{{x - y} \over {8{y^2} - 2{x^2}}}\)

Phương pháp giải:

 Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

Ta có \(8{y^2} - 2{x^2} = 2\left( {4{y^2} - {x^2}} \right) \)\(\,= 2\left( {2y + x} \right)\left( {2y - x} \right)\)

MTC \(= 10x\left( {2y + x} \right)\left( {2y - x} \right)\)

\(\displaystyle {7 \over {5x}} = {{7.2\left( {2y + x} \right)\left( {2y - x} \right)} \over {5x.2\left( {2y + x} \right)\left( {2y - x} \right)}}\)\(\,\displaystyle = {{14\left( {2y + x} \right)\left( {2y - x} \right)} \over {10x\left( {2y + x} \right)\left( {2y - x} \right)}}  \)

\(\displaystyle{4 \over {x - 2y}} = {{ - 4} \over {2y - x}}\)\(\,\displaystyle = {{ - 4.10x\left( {2y + x} \right)} \over {\left( {2y - x} \right).10x\left( {2y + x} \right)}} \)\(\,\displaystyle= {{ - 40x\left( {2y + x} \right)} \over {10x\left( {2y + x} \right)\left( {2y - x} \right)}}  \)

\(\displaystyle{{x - y} \over {8{y^2} - 2{x^2}}} = {{x - y} \over {2\left( {2y + x} \right)\left( {2y - x} \right)}} \)\(\,\displaystyle= {{\left( {x - y} \right).5x} \over {2\left( {2y + x} \right)\left( {2y - x} \right).5x}}  \)\(\, \displaystyle= {{5x\left( {x - y} \right)} \over {10x\left( {2y + x} \right)\left( {2y - x} \right)}}  \)


LG e

\(\displaystyle {{5{x^2}} \over {{x^3} + 6{x^2} + 12x + 8}},{{4x} \over {{x^2} + 4x + 4}},\)\(\,\displaystyle{3 \over {2x + 4}}\)

Phương pháp giải:

 Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Lời giải chi tiết:

Ta có \( {x^3} + 6{x^2} + 12x + 8 \)\(\,= {x^3} + 3{x^2}.2 + 3.x{.2^2} + {2^3} \)\(\,= {\left( {x + 2} \right)^3}  \)

\( {x^2} + 4x + 4 = {\left( {x + 2} \right)^2};\)

\(2x + 4 = 2\left( {x + 2} \right)  \)

MTC \(=2{\left( {x + 2} \right)^3}\)

\(\displaystyle {{5{x^2}} \over {{x^3} + 6{x^2} + 12x + 8}} = {{5{x^2}} \over {{{\left( {x + 2} \right)}^3}}} \)\(\,\displaystyle= {{5{x^2}.2} \over {{{\left( {x + 2} \right)}^3}.2}} = {{10{x^2}} \over {2{{\left( {x + 2} \right)}^3}}}  \)

\(\displaystyle{{4x} \over {{x^2} + 4x + 4}} = {{4x} \over {{{\left( {x + 2} \right)}^2}}} \)\(\,\displaystyle= {{4x.2\left( {x + 2} \right)} \over {{{\left( {x + 2} \right)}^2}.2\left( {x + 2} \right)}} = {{8x\left( {x + 2} \right)} \over {2{{\left( {x + 2} \right)}^3}}}  \)

\(\displaystyle{3 \over {2x + 4}} = {3 \over {2\left( {x + 2} \right)}} \)\(\,\displaystyle= {{3{{\left( {x + 2} \right)}^2}} \over {2\left( {x + 2} \right){{\left( {x + 2} \right)}^2}}} = {{3{{\left( {x + 2} \right)}^2}} \over {2{{\left( {x + 2} \right)}^3}}}  \).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"