Đề bài
Cho tam giác ABC vuông tại A, đường cao AH. Gọi
b. Tam giác DHE là tam giác gì ? Vì sao ?
c. Tứ giác BDEC là hình gì ? Vì sao ?
d. Chứng minh rằng BC = BD + CE.
Phương pháp giải - Xem chi tiết
Nhẩm lại dấu hiệu nhận biết của các tứ giác đã học rồi chứng minh.
Hình thang có 1 góc vuông là hình thang vuông
Trong một tam giác có đường trung tuyến ứng với 1 cạnh bằng nửa cạnh đó thì tam giác đó là tam giác vuông
Lời giải chi tiết
a) Điểm D đối xứng điểm H qua trục AB
⇒ AB là đường trung trực của HD
⇒ AH = AD (tính chất đường trung trực) ⇒ ∆ ADH cân tại A
Suy ra: AB là tia phân giác của
Điểm H và điểm E đối xứng qua trục AC
⇒ AC là đường trung trực của HE
⇒ AH = AE (tính chất đường trung trực) ⇒ ∆ AHE cân tại A
Suy ra: AC là đường phân giác của
Ta có:
Suy ra D, A, E thẳng hàng
Lại có: AD = AE (vì cùng bằng AH)
Nên điểm A là trung điểm của đoạn DE
Vậy điểm D đối xứng với điểm E qua điểm A.
b) Tam giác DHE có HA là trung tuyến và
c) Xét
+) AB chung
+) BD = BH ( vì AB là trung trực của DH)
+) AD = AH (vì AB là trung trực của DH)
Xét
+) AC chung
+) EC = HC ( vì AC là trung trực của EH)
+) AE = AH (vì AC là trung trực của EH)
Suy ra BD//CE (vì cùng vuông góc với DE)
Do đó tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE nên BDEC là hình thang vuông.
d) Do AB là đường trung trực của DH nên BD=BH (5)
Do AC là đường trung trực của EH nên CE=CH (6)
Cộng vế với vế của (5) và (6) ta có
[hoctot.me - Trợ lý học tập AI]