Giải bài 8 trang 72 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:30:22

Đề bài

Giải các phương trình chứa căn thức sau: 

a) \(\sqrt {3{x^2} - 4x + 1}  = \sqrt {{x^2} - x} \)

b) \(\sqrt {6{x^2} - 11x - 3}  = 2x - 1\)

Phương pháp giải - Xem chi tiết

Bước 1: Bình phương hai vế của PT

Bước 2: Giải PT thu được

Bước 3: Thử lại và KL nghiệm

Lời giải chi tiết

a) \(\sqrt {3{x^2} - 4x + 1}  = \sqrt {{x^2} - x} \)

\(\begin{array}{l} \Rightarrow 3{x^2} - 4x + 1 = {x^2} - x\\ \Leftrightarrow 2{x^2} - 3x + 1 = 0\\ \Leftrightarrow (x - 1)(2x - 1) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thử lại ta thấy PT đã cho có nghiệm duy nhất \(x = 1\)

b) \(\sqrt {6{x^2} - 11x - 3}  = 2x - 1\)

\(\begin{array}{l} \Rightarrow 6{x^2} - 11x - 3 = {\left( {2x - 1} \right)^2}\\ \Leftrightarrow 6{x^2} - 11x - 3 = 4{x^2} - 4x + 1\\ \Leftrightarrow 2{x^2} - 7x - 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 4\\x =  - \frac{1}{2}\end{array} \right.\end{array}\)

Thử lại ta thấy PT đã cho có nghiệm duy nhất \(x = 4\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"