Giải bài 1 trang 47 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

2024-09-14 10:34:00

Đề bài

Cho elip (E): \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{36}} = 1\)

a) Tìm tâm sai, chiều dài, chiều rộng hình chữ nhật cơ sở của (E) và vẽ (E)

b) Tìm độ dài hai bán kính qua tiêu của điểm \(M(0;6)\) trên (E).

c) Tìm tọa độ hai tiêu điểm và viết phương trình hai đường chuẩn của (E).

Phương pháp giải - Xem chi tiết

Cho elip \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), \(c = \sqrt {{a^2} - {b^2}} \)

a)

+ Tâm sai của elip: \(e = \frac{c}{a}\)

+ Chiều dài hình chữ nhật cơ sở: 2a.

+ Chiều rộng hình chữ nhật cơ sở: 2b.

b) Bán kính qua tiêu của \(M(x;y)\): \(M{F_1} = a + ex,\;M{F_2} = a - ex.\)

c)

+ Ứng với tiêu điểm \({F_1}( - c;0)\), có đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\)

+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x - \frac{a}{e} = 0\)

Lời giải chi tiết

Elip \((E)\) có \(a = 8,b = 6\), suy ra \(c = \sqrt {{a^2} - {b^2}}  = 2\sqrt 7 .\)

a)

+ Tâm sai của elip: \(e = \frac{c}{a} = \frac{{\sqrt 7 }}{4}\)

+ Chiều dài hình chữ nhật cơ sở: \(2a = 16\)

+ Chiều rộng hình chữ nhật cơ sở: \(2b = 12\)

b) Bán kính qua tiêu của \(M(0;6)\): \(M{F_1} = 8 + \frac{{\sqrt 7 }}{4}.0 = 8,\;M{F_2} = 8 - \frac{{\sqrt 7 }}{4}.0 = 8.\)

c)

+ Ứng với tiêu điểm \({F_1}( - 2\sqrt 7 ;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{32\sqrt 7 }}{7} = 0\)

+ Ứng với tiêu điểm \({F_2}(2\sqrt 7 ;0)\), có đường chuẩn \({\Delta _2}:x - \frac{{32\sqrt 7 }}{7} = 0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"