Giải bài 3 trang 37 Chuyên đề học tập Toán 10 – Cánh diều

2024-09-14 10:34:33

Đề bài

Chứng minh \(C_n^0{3^n} + C_n^1{3^{n - 1}} + ... + C_n^k{3^{n - k}} + ... + C_n^{n - 1}3 + C_n^n\)

\( = C_n^03 + C_n^13 + ... + C_n^k{3^k} + ... + C_n^{n - 1}{3^{n - 1}} + C_n^n{.3^n}\) với \(0 \le k \le n,n \in \mathbb{N}\)

Phương pháp giải - Xem chi tiết

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Lời giải chi tiết

Áp dụng công thức nhị thức Newton ta có:

\({\left( {a + b} \right)^n} = C_n^0.{a^n}.{b^0} + C_n^1{a^{n - 1}}.{b^1} + ... + C_n^k{a^{n - k}}.{b^k} + ... + C_n^{n - 1}a.{b^{n - 1}} + C_n^n.{a^0}.{b^n}\)

Thay \(a = 3,b = 1\) ta được

 \(\begin{array}{l} \Leftrightarrow {\left( {3 + 1} \right)^n} = C_n^0{.3^n}{.1^0} + C_n^1{3^{n - 1}}{.1^1} + ... + C_n^k{3^{n - k}}{.1^k} + ... + C_n^{n - 1}{3.1^{n - 1}} + C_n^n{.3^0}{.1^n}\\ \Rightarrow {4^n} = C_n^0{3^n} + C_n^1{3^{n - 1}} + ... + C_n^k{3^{n - k}} + ... + C_n^{n - 1}3 + C_n^n\end{array}\)

Thay \(a = 1,b = 3\) ta được

\(\begin{array}{l}{\left( {1 + 3} \right)^n} = C_n^0{.1^n}{.3^0} + C_n^1{1^{n - 1}}{.3^1} + ... + C_n^k{1^{n - k}}{.3^k} + ... + C_n^{n - 1}{1.3^{n - 1}} + C_n^n{.1^0}{.3^n}\\ \Rightarrow {4^n} = C_n^03 + C_n^13 + ... + C_n^k{3^k} + ... + C_n^{n - 1}{3^{n - 1}} + C_n^n{.3^n}\end{array}\)

Suy ra điều phải chứng minh

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"