Bài 1 trang 57 SGK Toán 11 tập 1 - Cánh diều

2024-09-14 12:46:45

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) được xác định bởi: \({u_1} = \frac{1}{3}\) và \({u_n} = 3{u_{n - 1}}\) với mọi \(n \ge 2\). Số hạng thứ năm của dãy số \(\left( {{u_n}} \right)\) là:

A.27

B.9

C.81

D.243

Phương pháp giải - Xem chi tiết

Dựa vào định nghĩa và số hạng tổng quát của cấp số nhân để xác định.

Lời giải chi tiết

Ta có: \({u_n} = 3{u_{n - 1}} \Rightarrow q = 3 \Rightarrow {u_n} = \frac{1}{3}{.3^{n - 1}}\)

Số hạng thứ năm của dãy số: \({u_5} = \frac{1}{3}{.3^{5 - 1}} = 27\)

 Chọn đáp án A

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"