Bài 2.5 trang 49 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:51:37

Đề bài

Chứng minh rằng các dãy số (un) cho bởi các công thức sau đây bị chặn:

a) \({u_n} = 2 + \frac{1}{n};\)

b) \({u_n} = \frac{1}{{n\left( {n + 1} \right)}};\)

c) \({u_n} = \sin \left( n \right) + \cos \left( n \right).\)

Phương pháp giải - Xem chi tiết

Dãy số \(\left( {{u_n}} \right)\) bị chặn khi \(m \le {u_n} \le M\forall n\) nguyên dương.

Lời giải chi tiết

a)

\(\begin{array}{l}{u_n} = 2 + \frac{1}{n}\\n \ge 1 \Leftrightarrow 0 < \frac{1}{n} \le 1 \Leftrightarrow 2 < 2 + \frac{1}{n} \le 3\end{array}\)

Vậy dãy số đã cho là dãy bị chặn.

b)

\(\begin{array}{l}{u_n} = \frac{1}{{n\left( {n + 1} \right)}}\\n \ge 1 \Leftrightarrow n + 1 \ge 2 \Rightarrow n\left( {n + 1} \right) \ge 2\\ \Rightarrow 0 < \frac{1}{{n\left( {n + 1} \right)}} \le \frac{1}{2}\end{array}\)

Vậy dãy số đã cho là dãy bị chặn.

c)

\(\begin{array}{l}{u_n} = \sin \left( n \right) + \cos \left( n \right)\\\left\{ \begin{array}{l} - 1 \le \sin \left( n \right) \le 1\\ - 1 \le \cos \left( n \right) \le 1\end{array} \right.\\ \Rightarrow  - 2 \le \sin \left( n \right) + \cos \left( n \right) \le 2\end{array}\)

Vậy dãy số đã cho là dãy bị chặn.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"