Bài 3.4 trang 64 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:51:53

Đề bài

Người ta thả một viên bi lăn trong một khe thẳng trên mặt phẳng.

Viên bi lăn chậm dần. Giây đầu tiên nó đi được 2 mét. Mỗi giây tiếp theo nó đi được một đoạn  bằng \(\frac{3}{4}\) đoạn đường đi được trước nó.

a, Tính đoạn đường viên bi đi được trong 5 giây đầu tiên.

b, Giả sử chuyển động của viên bi không bao giờ chấm dứt, viên bi có thể cách xa vị trí ban đầu 8 mét hay không?

Phương pháp giải - Xem chi tiết

a, Sử dụng công thức số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\) để tính các giá trị \({u_{2,}}{u_3},{u_4},{u_5}\).

b, Sử dụng công thức tổng của cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\).

Lời giải chi tiết

a, Ta có:  \({u_1} = 2\) và \(q = \frac{3}{4}\) \( \Rightarrow \)\({u_n} = 2.{\left( {\frac{3}{4}} \right)^{n - 1}}\)

\({u_2} = 2.{(\frac{3}{4})^{2 - 1}} = 2.\frac{3}{4} = \frac{3}{2}\); \({u_3} = 2.{(\frac{3}{4})^{3 - 1}} = 2.{\left( {\frac{3}{4}} \right)^2} = 2.\frac{9}{{16}} = \frac{9}{8}\)

\({u_4} = 2.{\left( {\frac{3}{4}} \right)^{4 - 1}} = 2.{(\frac{3}{4})^3} = 2.\frac{{27}}{{64}} = \frac{{27}}{{32}}\); \({u_5} = 2.{\left( {\frac{3}{4}} \right)^{5 - 1}} = 2.{\left( {\frac{3}{4}} \right)^4} = 2.\frac{{81}}{{256}} = \frac{{81}}{{128}}\).

Đoạn đường viên bi đi được trong 5 giây đầu tiên là :

\({u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 2 + \frac{3}{2} + \frac{9}{8} + \frac{{27}}{{32}} + \frac{{81}}{{128}} = \frac{{781}}{{128}}\)( mét)

b, Tổng quãng đường viên bi đi được là tổng của cấp số nhân lùi vô hạn với \({u_1} = 2\) và \(q = \frac{3}{4}\):

\(S = \frac{{{u_1}}}{{1 - q}} = \frac{2}{{1 - \frac{3}{4}}} = \frac{2}{{\frac{1}{4}}} = 8\)(mét)

Như vậy nếu chuyển động của viên bi không bao giờ chấm dứt, viên bi có thể cách vị trí ban đầu 8 mét.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"