Bài 3.7 trang 74 SGK Toán 11 tập 1 - Cùng khám phá

2024-09-14 12:51:58

Đề bài

Tính các giới hạn sau:

a, \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 3x + 5}}{{x + 1}}\)

b, \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + x - 6}}{{{x^2} - 4}}\)

c, \(\mathop {\lim }\limits_{x \to  - 2} \frac{{\sqrt {x + 11}  - 3}}{{x + 2}}\)

d, \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^2} + x + 10}}{{2{x^2} - 1}}\)

e, \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{5{x^3} + 9}}{{{x^4} + 1}}\)

g, \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\)

Phương pháp giải - Xem chi tiết

a, Tính giới hạn tử và mẫu để được giới hạn hàm số

b, Phân tích tử và rút gọn rồi tính giới hạn

c, Nhân liên hợp tử rồi rút gọn và tính giới hạn

d, e, Chia cả tử và mẫu cho x với bậc cao nhất và tính giới hạn

e, Đưa x ra khỏi dấu căn và rút gọn để tính giới hạn

Lời giải chi tiết

a, Ta có: \(\mathop {\lim }\limits_{x \to 0} ({x^2} + 3x + 5) = 5\) và \(\mathop {\lim }\limits_{x \to 0} (x + 1) = 1\)

Vậy \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 3x + 5}}{{x + 1}} = 5\)

b, Ta có : \(f(x) = \frac{{{x^2} + x - 6}}{{{x^2} - 4}} = \frac{{(x + 3).(x - 2)}}{{(x - 2).(x + 2)}} = \frac{{x + 3}}{{x + 2}}\)

\(\mathop {\lim }\limits_{x \to 2} (x + 3) = 5\) và \(\mathop {\lim }\limits_{x \to 2} (x + 2) = 4\)

Vậy \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + x - 6}}{{{x^2} - 4}} = \frac{5}{4}\).

c, Ta có: \(f(x) = \frac{{\sqrt {x + 11}  - 3}}{{x + 2}} = \frac{{(\sqrt {x + 11}  - 3)(\sqrt {x + 11}  + 3)}}{{x + 2}} = \frac{{x + 11 - {3^2}}}{{x + 2}} = 1\)

\(\mathop {\lim }\limits_{x \to  - 2} 1 = 1\)

Vậy \(\mathop {\lim }\limits_{x \to  - 2} \frac{{\sqrt {x + 11}  - 3}}{{x + 2}} = 1\)

d, Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^2} + x + 10}}{{2{x^2} - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3 + \frac{1}{x} + \frac{{10}}{{{x^2}}}}}{{2 - \frac{1}{{{x^2}}}}} = \frac{3}{2}\)

e, Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{5{x^3} + 9}}{{{x^4} + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{5 + \frac{9}{{{x^4}}}}}{{1 + \frac{1}{{{x^4}}}}} = 5\)

g, Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\left| x \right|.\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x.\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } ( - \sqrt {1 + \frac{1}{{{x^2}}}} ) =  - 1\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"