Giải mục 3 trang 5, 6 SGK Toán 11 tập 2 - Cùng khám phá

2024-09-14 12:53:57

Hoạt động 4

Ở lớp dưới, ta đã biết số \(\sqrt 2 \) là một số vô tỉ được biểu diễn dưới dạng số thập phân vô hạn không tuần hoàn: \(\sqrt 2 \) = 1,414213562... Gọi \({r_n}\) là số hữu tỉ được tạo thành từ n chữ số đầu tiên dùng để viết \(\sqrt 2 \) ở dạng thập phân, n = 1, 2,..., 10,...

a) Sử dụng máy tính cầm tay, hãy tìm các số \({5^{{r_n}}}\) tương ứng (với 9 chữ số thập phân) cho mỗi dấu "?" trong bảng bên phải. Người ta chứng minh được rằng khi \(n \to  + \infty \) thì dãy số (\({5^{{r_n}}}\)) dần đến một giới hạn mà ta kí hiệu là \({5^{\sqrt 2 }}\).

b) Sử dụng máy tính cầm tay, tính \({5^{\sqrt 2 }}\) (với 9 chữ số thập phân).

Phương pháp giải:

Sử dụng máy tính cầm tay.

Lời giải chi tiết:

a,

 

b) \({5^{\sqrt 2 }} \approx 9,738517742\)


Luyện tập 3

Rút gọn biểu thức \(\frac{{{{\left( {{a^{\sqrt 3  - 1}}} \right)}^{\sqrt 3  + 1}}}}{{{a^{\sqrt 5  - 3}}.{a^{4 - \sqrt 5 }}}}\,\,\left( {a > 0} \right)\).

Phương pháp giải:

Áp dụng: \({\left( {{a^n}} \right)^m} = {a^{n.m}};\,{a^n}.{a^m} = {a^{n + m}}\)

Lời giải chi tiết:

Ta có: \(\frac{{{{\left( {{a^{\sqrt 3  - 1}}} \right)}^{\sqrt 3  + 1}}}}{{{a^{\sqrt 5  - 3}}.{a^{4 - \sqrt 5 }}}} = \frac{{{a^{\left( {\sqrt 3  - 1} \right)\left( {\sqrt 3  + 1} \right)}}}}{{{a^{\sqrt 5  - 3 + 4 - \sqrt 5 }}}} = \frac{{{a^2}}}{a} = a\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"