Đề bài
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của SC.
a) Tính khoảng cách từ S đến mặt phẳng (ABC).
b) Tính khoảng cách từ M đến mặt phẳng (SAG).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính: Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn thẳng MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M; (P)).
Lời giải chi tiết
a) Vì S.ABC là hình chóp tam giác đều, G là trọng tâm của tam giác ABC nên
Vì tam giác ABC đều nên
Gọi I là giao điểm của AG và BC. Khi đó,
Tam giác ABC đều nên AI là đường trung tuyến đồng thời là đường cao. Do đó, tam giác ABI vuông tại I. Suy ra:
Vì
Áp dụng định lí Pythagore vào tam giác ASG vuông tại G có:
b) Vì
Vì
Do đó,