Đề thi giữa kì 2 Toán 11 Chân trời sáng tạo - Đề số 1

2024-09-14 13:15:08
Câu 1 :

Góc giữa hai đường thẳng a và b có thể bằng:

  • A
    1800.
  • B
    1500.
  • C
    900.
  • D
    Cả A, B, C đều sai.

Đáp án : C

Phương pháp giải :

Góc giữa hai đường thẳng có số đo không vượt quá 900.

Lời giải chi tiết :

Vì góc giữa hai đường thẳng có số đo không vượt quá 900 nên góc giữa hai đường thẳng có thể bằng 900.

Câu 2 :

Cho đường thẳng d vuông góc với mặt phẳng (P) và đường thẳng d’ nằm trong mặt phẳng P. Góc giữa hai đường thẳng d và d’ bằng bao nhiêu độ?

  • A
    \({30^0}\).
  • B
    \({45^0}\).
  • C
    \({60^0}\).
  • D
    \({90^0}\).

Đáp án : D

Phương pháp giải :

Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Lời giải chi tiết :

Vì đường thẳng d vuông góc với mặt phẳng (P) và đường thẳng d’ nằm trong mặt phẳng P nên \(d \bot d' \Rightarrow \left( {d,d'} \right) = {90^0}\)

Câu 3 :

Phương trình \({\log _3}x + {\log _3}\left( {x + 1} \right) = {\log _3}\left( {5x + 12} \right)\) có bao nhiêu nghiệm?

  • A
    0.
  • B
    1.
  • C
    2.
  • D
    Vô số.

Đáp án : B

Phương pháp giải :

Với \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))

Lời giải chi tiết :

Điều kiện: \(x > 0\)

\({\log _3}x + {\log _3}\left( {x + 1} \right) = {\log _3}\left( {5x + 12} \right) \Leftrightarrow {\log _3}x\left( {x + 1} \right) = {\log _3}\left( {5x + 12} \right)\)

\( \Leftrightarrow {x^2} + x = 5x + 12 \Leftrightarrow {x^2} - 4x - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 2\left( L \right)\\x = 6\left( {TM} \right)\end{array} \right.\)

Vậy phương trình đã cho có một nghiệm là \(x = 6\)

Câu 4 :

Chọn đáp án đúng.

  • A
    \({\log _{1000}}{1000^3} = {1000^3}\).
  • B
    \({\log _{1000}}{1000^3} = \frac{1}{3}\).
  • C
    \({\log _{1000}}{1000^3} = 3\).
  • D
    \({\log _{1000}}{1000^3} = {3^{1000}}\).

Đáp án : C

Phương pháp giải :

Với a, b là số thực dương và \(a \ne 1\) thì \({\log _a}{a^b} = b\).

Lời giải chi tiết :

\({\log _{1000}}{1000^3} = 3\)

Câu 5 :

Tập nghiệm của bất phương trình \({\left( {\frac{1}{{\sqrt 5 }}} \right)^{2x}} < {25^{1 - x}}\) là:

  • A
    \(S = \left( { - 2; + \infty } \right)\).
  • B
    \(S = \left( {2; + \infty } \right)\).
  • C
    \(S = \left( { - \infty ; - 2} \right)\).
  • D
    \(S = \left( { - \infty ;2} \right)\).

Đáp án : D

Phương pháp giải :

Với \(a > 1\) thì \({a^{u\left( x \right)}} > {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) > v\left( x \right)\)

Lời giải chi tiết :

\({\left( {\frac{1}{{\sqrt 5 }}} \right)^{2x}} < {25^{1 - x}} \Leftrightarrow {5^{\frac{{ - 2x}}{2}}} < {5^{2\left( {1 - x} \right)}} \Leftrightarrow  - x < 2 - 2x\left( {do\;5 > 1} \right) \Leftrightarrow x < 2\)

Vậy tập nghiệm của bất phương trình đã cho là: \(S = \left( { - \infty ;2} \right)\).

Câu 6 :

Cho hình lập phương ABCD.A’B’C’D’. Góc giữa hai đường thẳng A’A và D’B’ bằng:

  • A
    \({30^0}\).
  • B
    \({60^0}\).
  • C
    \({90^0}\).
  • D
    \({45^0}\).

Đáp án : C

Phương pháp giải :

Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Lời giải chi tiết :

Vì ABCD.A’B’C’D’ là hình lập phương nên \(AA' \bot \left( {A'B'C'D'} \right)\), mà \(B'D' \subset \left( {A'B'C'D'} \right)\) nên \(AA' \bot B'D'\). Do đó, góc giữa hai đường thẳng A’A và D’B’ bằng \({90^0}\).

Câu 7 :

Với giá trị nào của a thì \({a^{\sqrt 8 }} < \frac{1}{{{a^{ - 3}}}}\)?

  • A
    \(a = \frac{3}{4}\).
  • B
    \(a = \frac{1}{2}\).
  • C
    \(a = 1\).
  • D
    \(a = \frac{3}{2}\).

Đáp án : D

Phương pháp giải :

Nếu \(a > 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha  > \beta \)

Nếu \(0 < a < 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha  < \beta \)

Lời giải chi tiết :

Ta có: \(\frac{1}{{{a^{ - 3}}}} = {a^3} = {a^{\sqrt 9 }}\) nên \({a^{\sqrt 8 }} < {a^{\sqrt 9 }}\)

Vì \(\sqrt 8  < \sqrt 9 \), mà \({a^{\sqrt 8 }} < {a^{\sqrt 9 }}\) nên \(a > 1\). Do đó, \(a = \frac{3}{2}\) thỏa mãn yêu cầu bài toán.

Câu 8 :

Chọn đáp án đúng:

  • A
    \(\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[6]{{ab}}\).
  • B
    \(\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[9]{{ab}}\).
  • C
    \(\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[3]{{a + b}}\).
  • D
    \(\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[3]{{ab}}\).

Đáp án : D

Phương pháp giải :

\(\sqrt[n]{a}.\sqrt[n]{b} = \sqrt[n]{{ab}}\) (với các biểu thức đều có nghĩa).

Lời giải chi tiết :

Ta có: \(\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[3]{{ab}}\).

Câu 9 :

Hàm số nào dưới đây có đồ thị như hình dưới?

  • A
    \(y = {3^x}\).
  • B
    \(y = {\left( {\frac{1}{2}} \right)^x}\).
  • C
    \(y = {\left( {\frac{1}{3}} \right)^x}\).
  • D
    \(y = {\left( {\sqrt 2 } \right)^x}\).

Đáp án : C

Phương pháp giải :

Xét xem đồ thị hàm số nào đi qua điểm \(\left( { - 1;3} \right)\) và (0;1) thì đó là đồ thị hàm số cần tìm.

Lời giải chi tiết :

Ta thấy đồ thị hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\) đi qua điểm \(\left( { - 1;3} \right)\) và (0;1) nên hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\) là hàm số cần tìm.

Câu 10 :

Tập nghiệm của bất phương trình \({\log _{\frac{2}{3}}}\left( {x - 3} \right) \ge 1\) là:

  • A
    \(S = \left( {3;\frac{{11}}{3}} \right)\).
  • B
    \(S = \left( {3;\frac{{11}}{3}} \right]\).
  • C
    \(S = \left[ {3;\frac{{11}}{3}} \right]\).
  • D
    \(S = \left[ {3;\frac{{11}}{3}} \right)\).

Đáp án : B

Phương pháp giải :

Nếu \(0 < a < 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) \le v\left( x \right)\end{array} \right.\).

Lời giải chi tiết :

\({\log _{\frac{2}{3}}}\left( {x - 3} \right) \ge 1 \Leftrightarrow {\log _{\frac{2}{3}}}\left( {x - 3} \right) \ge {\log _{\frac{2}{3}}}\frac{2}{3} \Leftrightarrow \left\{ \begin{array}{l}x - 3 > 0\\x - 3 \le \frac{2}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 3\\x \le \frac{{11}}{3}\end{array} \right.\)

Do đó, tập nghiệm của bất phương trình là: \(S = \left( {3;\frac{{11}}{3}} \right]\).

Câu 11 :

Cho hình chóp S. ABCD có đáy ABCD là hình thang vuông tại A và D, \(SA \bot \left( {ABCD} \right)\). Chọn đáp án đúng.

  • A
    \(\left( {AB,SD} \right) = {90^0}\).
  • B
    \(\left( {AB,SD} \right) = {85^0}\).
  • C
    \(\left( {AB,SD} \right) = {70^0}\).
  • D
    \(\left( {AB,SD} \right) = {75^0}\).

Đáp án : A

Phương pháp giải :

+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).

+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Lời giải chi tiết :

Vì \(SA \bot \left( {ABCD} \right),AB \subset \left( {ABCD} \right) \Rightarrow SA \bot AB\).

Vì ABCD là hình thang vuông tại A nên \(AB \bot AD\).

Ta có: \(AB \bot AD\), \(SA \bot AB\) và SA và AD cắt nhau tại A và nằm trong mặt phẳng (SAD)

Do đó, \(AB \bot \left( {SAD} \right) \Rightarrow AB \bot SD\). Suy ra, \(\left( {AB,SD} \right) = {90^0}\).

Câu 12 :

Trong không gian cho hai đường thẳng a và b vuông góc với nhau. Mệnh đề nào dưới đúng?

  • A
    a và b cắt nhau.
  • B
    a và b chéo nhau.
  • C
    a và b cùng nằm trên một mặt phẳng.
  • D
    Góc giữa a và b bằng \({90^0}\).

Đáp án : D

Phương pháp giải :

Hai đường thẳng vuông góc với nhau nếu góc giữa chúng bằng \({90^0}\).

Lời giải chi tiết :

Trong không gian cho hai đường thẳng a và b vuông góc với nhau thì góc giữa chúng bằng \({90^0}\).

Câu 13 :

Hàm số nào dưới đây là hàm số mũ?

  • A
    \(y = {x^{\sqrt 2 }}\).
  • B
    \(y = {x^{\log 4}}\).
  • C
    \(y = {\left( {\frac{\pi }{2}} \right)^x}\).
  • D
    \(y = {\log _2}x\).

Đáp án : C

Phương pháp giải :

Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) được gọi là hàm số mũ cơ số a.

Lời giải chi tiết :

Hàm số \(y = {\left( {\frac{\pi }{2}} \right)^x}\) được gọi là hàm số mũ.

Câu 14 :

Chọn đáp án đúng.

  • A
    Có hai đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.
  • B
    Có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.
  • C
    Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.
  • D
    Có ba đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.

Đáp án : C

Phương pháp giải :

Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.

Lời giải chi tiết :

Có duy nhất một đường thẳng cùng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.

Câu 15 :

Có bao nhiêu mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước?

  • A
    Vô số.
  • B
    1.
  • C
    2.
  • D
    3.

Đáp án : B

Phương pháp giải :

Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

Lời giải chi tiết :

Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

Câu 16 :

Chọn đáp án đúng:

  • A
    Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
  • B
    Hai đường thẳng cùng vuông góc với một mặt phẳng thì song song với nhau.
  • C
    Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì vuông góc với nhau.
  • D
    Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì cắt nhau.

Đáp án : A

Phương pháp giải :

Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.

Lời giải chi tiết :

Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.

Câu 17 :

Nghiệm của phương trình \({\left( {\frac{1}{{16}}} \right)^{x + 1}} = {64^{2x}}\) là:

  • A
    \(x = \frac{{ - 1}}{4}\).
  • B
    \(x = \frac{1}{4}\).
  • C
    \(x = \frac{{ - 1}}{8}\).
  • D
    \(x = \frac{1}{8}\).

Đáp án : A

Phương pháp giải :

\({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)

Lời giải chi tiết :

\({\left( {\frac{1}{{16}}} \right)^{x + 1}} = {64^{2x}} \Leftrightarrow {4^{ - 2\left( {x + 1} \right)}} = {4^{3.2x}} \Leftrightarrow  - 2x - 2 = 6x \Leftrightarrow 8x =  - 2 \Leftrightarrow x = \frac{{ - 1}}{4}\)

Câu 18 :

Chọn đáp án đúng.

Cho n là một số nguyên dương. Với a là số thực tùy ý khác 0 thì:

  • A
    \({a^{ - n}} = \frac{1}{{{a^n}}}\).
  • B
    \({a^{1 - n}} = \frac{1}{{{a^n}}}\).
  • C
    \({a^{\frac{1}{n}}} = \frac{1}{{{a^n}}}\).
  • D
    Cả A, B, C đều sai.

Đáp án : A

Phương pháp giải :

Cho n là một số nguyên dương. Với a là số thực tùy ý khác 0 thì \({a^{ - n}} = \frac{1}{{{a^n}}}\).

Lời giải chi tiết :

Cho n là một số nguyên dương. Với a là số thực tùy ý khác 0 thì \({a^{ - n}} = \frac{1}{{{a^n}}}\).

Câu 19 :

Giá trị của phép tính \({4^{{{\log }_{\sqrt 2 }}3}}\) là:

  • A
    81.
  • B
    \(9\).
  • C
    \(\frac{1}{{81}}\).
  • D
    \(\frac{1}{9}\).

Đáp án : A

Phương pháp giải :

Với a, b là số thực dương và \(a \ne 1\) thì \({a^{{{\log }_a}b}} = b,{\log _{{a^\alpha }}}b = \frac{1}{\alpha }{\log _a}b;{\log _a}{b^\alpha } = \alpha {\log _a}b\).

Lời giải chi tiết :

\({4^{{{\log }_{\sqrt 2 }}3}} = {2^{2{{\log }_{{2^{\frac{1}{2}}}}}3}} = {2^{4{{\log }_2}3}} = {2^{{{\log }_2}{3^4}}} = 81\)

Câu 20 :

Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) có tập xác định là:

  • A
    \(D = \left( {0; + \infty } \right)\).
  • B
    \(D = \left( { - \infty ;0} \right)\).
  • C
    \(D = \left( { - \infty ; + \infty } \right)\).
  • D
    Cả A, B, C đều sai.

Đáp án : C

Phương pháp giải :

Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) có tập xác định là \(D = \left( { - \infty ; + \infty } \right)\).

Lời giải chi tiết :

Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) có tập xác định là \(D = \left( { - \infty ; + \infty } \right)\).

Câu 21 :

Hàm số \(y = {\log _2}x\) đồng biến trên khoảng nào sau đây?

  • A
    \(\left( { - 1; + \infty } \right)\).
  • B
    \(\left[ {0; + \infty } \right)\).
  • C
    \(\left[ { - 1; + \infty } \right)\).
  • D
    \(\left( {1; + \infty } \right)\).

Đáp án : D

Phương pháp giải :

Nếu \(a > 1\) thì hàm số \(y = {\log _2}x\) đồng biến trên \(\left( {0; + \infty } \right)\).

Lời giải chi tiết :

Vì \(2 > 1\) nên hàm số \(y = {\log _2}x\) đồng biến trên \(\left( {0; + \infty } \right)\). Do đó, hàm số \(y = {\log _2}x\) đồng biến trên \(\left( {1; + \infty } \right)\)

Câu 22 :

Cho hình chóp S. ABCD có đáy ABCD là hình bình hành và \(\widehat {SAB} = {100^0}\). Góc giữa hai đường thẳng SA và CD bằng bao nhiêu độ?

  • A
    \({100^0}\).
  • B
    \({90^0}\).
  • C
    \({80^0}\).
  • D
    \({70^0}\).

Đáp án : C

Phương pháp giải :

+ Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm O và lần lượt song song (hoặc trùng) với a và b, kí hiệu \(\left( {a,b} \right)\) hoặc \(\widehat {\left( {a;b} \right)}\).

+ Góc giữa hai đường thẳng không vượt quá \({90^0}\).

Lời giải chi tiết :

Vì ABCD là hình bình hành nên \(AB//CD\)

Do đó, \(\left( {SA,CD} \right) = \left( {SA,AB} \right) = {180^0} - \widehat {SAB} = {80^0}\)

Câu 23 :

Chọn đáp án đúng.

\({\log _a}b\) xác định khi và chỉ khi:

  • A
    \(a > 0\).
  • B
    \(a > 1\).
  • C
    \(a > 0,a \ne 1,b > 0\).
  • D
    \(a > 1,b > 0\).

Đáp án : C

Phương pháp giải :

\({\log _a}b\) xác định khi và chỉ khi \(a > 0,a \ne 1,b > 0\).

Lời giải chi tiết :

\({\log _a}b\) xác định khi và chỉ khi \(a > 0,a \ne 1,b > 0\).

Câu 24 :

Nghiệm của phương trình \({2^{2x - 1}} = {2^x}\) là:

  • A
    \(x = 0\).
  • B
    \(x = 2\).
  • C
    \(x =  - 1\).
  • D
    \(x = 1\).

Đáp án : D

Phương pháp giải :

\({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)

Lời giải chi tiết :

\({2^{2x - 1}} = {2^x} \Leftrightarrow 2x - 1 = x \Leftrightarrow x = 1\)

Vậy phương trình đã cho có nghiệm \(x = 1\)

Câu 25 :

Phương trình \({\pi ^{x - 3}} = \frac{1}{\pi }\) có nghiệm là:

  • A
    \(x = 0\).
  • B
    \(x = 2\).
  • C
    \(x =  - 1\).
  • D
    \(x = 1\).

Đáp án : B

Phương pháp giải :

\({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)

Lời giải chi tiết :

\({\pi ^{x - 3}} = \frac{1}{\pi } \Leftrightarrow {\pi ^{x - 3}} = {\pi ^{ - 1}} \Leftrightarrow x - 3 =  - 1 \Leftrightarrow x = 2\)

Vậy phương trình có nghiệm \(x = 2\).

Câu 26 :

Nghiệm của phương trình \({2^x} = 9\) là:

  • A
    \(x = {\log _9}2\).
  • B
    \(x = {\log _2}9\).
  • C
    \(x = {2^{ - 9}}\)
  • D
    \(x = \frac{9}{2}\).

Đáp án : B

Phương pháp giải :

Cho phương trình \({a^x} = b\left( {a > 0,a \ne 1} \right)\):

+ Nếu \(b \le 0\) thì phương trình vô nghiệm.

+ Nếu \(b > 0\) thì phương trình có nghiệm duy nhất \(x = {\log _a}b\).

Lời giải chi tiết :

\({2^x} = 9 \Leftrightarrow x = {\log _2}9\)

Vậy phương trình có nghiệm là \(x = {\log _2}9\).

Câu 27 :

Khẳng định nào sau đây đúng?

  • A
    Lôgarit cơ số 10 của số thực dương a kí hiệu là \(\frac{1}{{\ln a}}\).
  • B
    Lôgarit cơ số 10 của số thực dương a kí hiệu là \(\log a\).
  • C
    Lôgarit cơ số 10 của số thực dương a kí hiệu là \(\frac{1}{{\log a}}\).
  • D
    Lôgarit cơ số 10 của số thực dương a kí hiệu là \(\ln a\).

Đáp án : B

Phương pháp giải :

Lôgarit cơ số 10 của số thực dương b được gọi là lôgarit thập phân của b và kí hiệu logb hay lg b.

Lôgarit cơ số e của số thực dương b được gọi là lôgarit tự nhiên của b và kí hiệu ln b.

Lời giải chi tiết :

Lôgarit cơ số 10 của số thực dương a kí hiệu là \(\log a\).

Câu 28 :

Cho hình chóp S. ABCD có ABCD là hình chữ nhật, SA vuông góc với đáy. Đường thẳng BC vuông góc với mặt phẳng nào?

  • A
    (SAD).
  • B
    (SCD).
  • C
    (SAC).
  • D
    (SAB).

Đáp án : D

Phương pháp giải :

+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).

+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Lời giải chi tiết :

Vì \(SA \bot \left( {ABCD} \right),BC \subset \left( {ABCD} \right) \Rightarrow SA \bot BC\)

Mà ABCD là hình chữ nhật nên \(BC \bot AB\)

Ta có: \(SA \bot BC,BC \bot AB,\) AB và SA cắt nhau tại A và nằm trong mặt phẳng (SAB).

Do đó, \(BC \bot \left( {SAB} \right)\)

Câu 29 :

Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường di chuyển của vật theo thời gian t thì … biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\). Đáp án thích hợp điền vào “…” để được câu đúng là:

  • A
    \(f''\left( t \right)\).
  • B
    \(\frac{1}{2}f\left( t \right)\).
  • C
    \(f'\left( {{t_0}} \right)\).
  • D
    \(\frac{1}{2}f''\left( t \right)\).

Đáp án : C

Phương pháp giải :

Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường di chuyển của vật theo thời gian t thì \(f'\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\).

Lời giải chi tiết :

Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường di chuyển của vật theo thời gian t thì \(f'\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\).

Câu 30 :

Cho hàm số \(f\left( x \right) = {2^x}\). Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của f(x) trên đoạn \(\left[ { - 2;3} \right]\). Khi đó:

  • A
    \(M.m = 2\).
  • B
    \(M.m = \frac{1}{2}\)
  • C
    \(M.m = 4\).
  • D
    \(M.m = \frac{1}{4}\).

Đáp án : A

Phương pháp giải :

Cho hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\):

+ Nếu \(a > 1\) thì hàm số đồng biến trên \(\mathbb{R}\).

+ Nếu \(0 < a < 1\) thì hàm số nghịch biến trên \(\mathbb{R}\).

Lời giải chi tiết :

Vì \(2 > 1\) nên hàm số \(f\left( x \right) = {2^x}\) đồng biến trên \(\mathbb{R}\).

Do đó, \(\mathop {\max }\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right) = {2^3} = 8;\mathop {\min }\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( { - 2} \right) = {2^{ - 2}} = \frac{1}{4}\)

Suy ra: \(M = 8,m = \frac{1}{4} \Rightarrow Mm = 8.\frac{1}{4} = 2\).

Câu 31 :

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\), có đạo hàm tại \({x_o} \in \left( {a;b} \right)\). Đại lượng \(\Delta x = x - {x_0}\) gọi là số gia của biến tại \({x_0}\). Đại lượng \(\Delta y = f\left( x \right) - f\left( {{x_0}} \right)\) gọi là số gia tương ứng của hàm số. Khi đó:

  • A
    \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) + f\left( {{x_0}} \right)}}{{\Delta x}}\).
  • B
    \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\).
  • C
    \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{2\Delta x}}\).
  • D
    \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) + f\left( {{x_0}} \right)}}{{2\Delta x}}\).

Đáp án : B

Phương pháp giải :

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\), có đạo hàm tại \({x_o} \in \left( {a;b} \right)\). Đại lượng \(\Delta x = x - {x_0}\) gọi là số gia của biến tại \({x_0}\). Đại lượng \(\Delta y = f\left( x \right) - f\left( {{x_0}} \right)\) gọi là số gia tương ứng của hàm số. Khi đó, \(x = {x_0} + \Delta x\) và \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\).

Lời giải chi tiết :

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\), có đạo hàm tại \({x_o} \in \left( {a;b} \right)\). Đại lượng \(\Delta x = x - {x_0}\) gọi là số gia của biến tại \({x_0}\). Đại lượng \(\Delta y = f\left( x \right) - f\left( {{x_0}} \right)\) gọi là số gia tương ứng của hàm số. Khi đó, \(x = {x_0} + \Delta x\) và \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\).

Câu 32 :

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\) và H là hình chiếu vuông góc của S lên BC. Chọn khẳng định đúng.

  • A
    \(BC \bot AB\).
  • B
    \(BC \bot AH\).
  • C
    \(BC \bot SC\).
  • D
    Cả A, B, C đều sai.

Đáp án : B

Phương pháp giải :

+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).

+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Lời giải chi tiết :

Vì \(SA \bot \left( {ABC} \right),BC \subset \left( {ABC} \right) \Rightarrow SA \bot BC\), mà \(BC \bot SH\) và SA và SH cắt nhau tại S và nằm trong mặt phẳng (SAH) nên \(BC \bot \left( {SAH} \right)\).

Lại có: \(AH \subset \left( {SAH} \right)\) nên \(BC \bot AH\).

Câu 33 :

Cho hình chóp S. ABCD có đáy ABCD là hình thoi. Gọi M, N lần lượt là trung điểm của các cạnh SB và SD. Khi đó, góc giữa hai đường thẳng AC và MN bằng bao nhiêu độ?

  • A
    \({100^0}\).
  • B
    \({90^0}\).
  • C
    \({80^0}\).
  • D
    \({70^0}\).

Đáp án : B

Phương pháp giải :

Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại.

Lời giải chi tiết :

Vì M, N lần lượt là trung điểm của các cạnh SB và SD nên MN là đường trung bình của tam giác SBD, do đó, MN//BD.

Vì ABCD là hình thoi nên \(AC \bot BD\)

Vì \(AC \bot BD\), MN//BD nên \(AC \bot MN \Rightarrow \left( {AC,MN} \right) = {90^0}\).

Câu 34 :

Chọn đáp án đúng:

  • A
    \({\log _5}15 - 2{\log _5}\sqrt 3  =  - 1\).
  • B
    \({\log _5}15 - 2{\log _5}\sqrt 3  = 1\).
  • C
    \({\log _5}15 - 2{\log _5}\sqrt 3  = 0\).
  • D
    \({\log _5}15 - 2{\log _5}\sqrt 3  = \frac{1}{2}\).

Đáp án : B

Phương pháp giải :

Với a, b là số thực dương và \(a \ne 1\) thì \({\log _a}{b^\alpha } = \alpha {\log _a}b,\log {\,_a}a = 1\)

Với a là số thực dương, \(a \ne 1\), \(M > 0,N > 0\) thì \({\log _a}\frac{M}{N} = {\log _a}M - {\log _a}N\).

Lời giải chi tiết :

\({\log _5}15 - 2{\log _5}\sqrt 3  = {\log _5}15 - {\log _5}3 = {\log _5}\frac{{15}}{3} = {\log _5}5 = 1\)

Câu 35 :

Đồ thị hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) cắt trục tung tại điểm có tung độ bằng:

  • A
    0.
  • B
    1.
  • C
    2.
  • D
    3.

Đáp án : B

Phương pháp giải :

Đồ thị hàm số hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) cắt trục tung tại điểm có tung độ bằng 1.

Lời giải chi tiết :

Đồ thị hàm số hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) cắt trục tung tại điểm có tung độ bằng 1.

Câu 36 :

Rút gọn biểu thức \(P = \frac{{{a^{\sqrt 5  + 1}}.{a^{7 - \sqrt 5 }}}}{{{{\left( {{a^{3 + \sqrt 2 }}} \right)}^{3 - \sqrt 2 }}}}\) (với \(a > 0\)).

  • A
    \({a^2}\).
  • B
    a.
  • C
    \(\frac{1}{a}\).
  • D
    \(2{a^2}\).

Đáp án : B

Phương pháp giải :

\({a^m}.{a^n} = {a^{m + n}};{\left( {{a^m}} \right)^n} = {a^{mn}},{a^m}:{a^n} = {a^{m - n}}\) (a khác 0).

Lời giải chi tiết :

\(P = \frac{{{a^{\sqrt 5  + 1}}.{a^{7 - \sqrt 5 }}}}{{{{\left( {{a^{3 + \sqrt 2 }}} \right)}^{3 - \sqrt 2 }}}} = \frac{{{a^{\sqrt 5  + 1 + 7 - \sqrt 5 }}}}{{{a^{\left( {3 + \sqrt 2 } \right)\left( {3 - \sqrt 2 } \right)}}}} = \frac{{{a^8}}}{{{a^7}}} = a\)

Câu 37 :

Đạo hàm của hàm số \(y = \sqrt {2 + \sin 3x} \) là:

  • A
    \(y' = \frac{{ - 1}}{{2\sqrt {2 + \sin 3x} }}\).
  • B
    \(y' = \frac{{ - 3\cos 3x}}{{2\sqrt {2 + \sin 3x} }}\).
  • C
    \(y' = \frac{{3\cos 3x}}{{2\sqrt {2 + \sin 3x} }}\).
  • D
    \(y' = \frac{1}{{2\sqrt {2 + \sin 3x} }}\).

Đáp án : C

Phương pháp giải :

+ Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y{'_x} = y{'_u}.u{'_x}\).

+ \(\sin u\left( x \right) = u'\left( x \right)\cos u\left( x \right);\sqrt {u\left( x \right)}  = \frac{{u'\left( x \right)}}{{2\sqrt {u\left( x \right)} }}\).

Lời giải chi tiết :

\(y' = \frac{{\left( {2 + \sin 3x} \right)'}}{{2\sqrt {2 + \sin 3x} }} = \frac{{3\cos 3x}}{{2\sqrt {2 + \sin 3x} }}\)

Câu 38 :

Cho a là số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là đúng?

  • A
    \({\left( {{a^m}} \right)^n} = {a^{m + n}}\).
  • B
    \({\left( {{a^m}} \right)^n} = {a^{m - n}}\).
  • C
    \({\left( {{a^m}} \right)^n} = {a^{m.n}}\).
  • D
    \({\left( {{a^m}} \right)^n} = {a^{\frac{m}{n}}}\).

Đáp án : C

Phương pháp giải :

Với a là số thực dương và m, n là hai số thực tùy ý thì \({\left( {{a^m}} \right)^n} = {a^{m.n}}\).

Lời giải chi tiết :

Với a là số thực dương và m, n là hai số thực tùy ý thì \({\left( {{a^m}} \right)^n} = {a^{m.n}}\).

Câu 39 :

Chọn khẳng định đúng.

  • A
    \(\left( {\sin x} \right)' = \cos x\).
  • B
    \(\left( {\sin x} \right)' =  - \cos x\).
  • C
    \(\left( {\sin x} \right)' = \frac{1}{{\cos x}}\).
  • D
    \(\left( {\sin x} \right)' = \frac{{ - 1}}{{\cos x}}\).

Đáp án : A

Phương pháp giải :

\(\left( {\sin x} \right)' = \cos x\)

Lời giải chi tiết :

\(\left( {\sin x} \right)' = \cos x\)

Câu 40 :

Đạo hàm của hàm số \(y = {x^3}\) là:

  • A
    \(y' = 3x\).
  • B
    \(y' = 3{x^2}\).
  • C
    \(y' = \frac{1}{3}{x^2}\).
  • D
    \(y' = \frac{x}{3}\).

Đáp án : B

Phương pháp giải :

\(\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha  - 1}}\)

Lời giải chi tiết :

\(y' = \left( {{x^3}} \right)' = 3{x^2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"