Giải bài tập 5.33 trang 112 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:15:34

Đề bài

Cho hình 5.43, trong đó BD là đường kính, \(\widehat {{\rm{AOB}}} = 40^\circ ;\widehat {\,{\rm{BOC}}} = 100^\circ \). Khi đó:

A. sđ \(\overset\frown{\text{DC}}=80{}^\circ \) và sđ \(\overset\frown{\text{AD}}=220{}^\circ \)

B. sđ \(\overset\frown{\text{DC}}=280{}^\circ \) và sđ \(\overset\frown{\text{AD}}=220{}^\circ \)

C. sđ \(\overset\frown{\text{DC}}=280{}^\circ \) và sđ \(\overset\frown{\text{AD}}=140{}^\circ \)

D. sđ \(\overset\frown{\text{DC}}=80{}^\circ \) và sđ \(\overset\frown{\text{AD}}=140{}^\circ \)

Phương pháp giải - Xem chi tiết

Dựa vào liên hệ giữa hai góc kề bù tính số đo góc \(\widehat {\,{\rm{DOC}}}\) và \(\widehat {\,{\rm{AOD}}}\). Từ đó suy ra số đo các cung DC và AD.

Lời giải chi tiết

Vì \(\widehat {\,{\rm{DOC}}}\) và \(\widehat {\,{\rm{BOC}}}\) là hai góc kề bù nên

\(\widehat {\,{\rm{DOC}}} + \widehat {\,{\rm{BOC}}} = 180^\circ \)

hay \(\widehat {\,{\rm{DOC}}} = 180^\circ  - \widehat {\,{\rm{BOC}}} = 180^\circ  - 100^\circ  = 80^\circ \).

Suy ra sđ \(\overset\frown{\text{DC}}=80{}^\circ \)

Vì \(\widehat {\,{\rm{AOD}}}\) và \(\widehat {\,{\rm{AOB}}}\) là hai góc kề bù nên

\(\widehat {\,{\rm{AOD}}} + \widehat {\,{\rm{AOB}}} = 180^\circ \)

hay \(\widehat {\,{\rm{AOD}}} = 180^\circ  - \widehat {\,{\rm{AOB}}} = 180^\circ  - 40^\circ  = 140^\circ \).

Suy ra sđ \(\overset\frown{\text{AD}}=140{}^\circ \)

Chọn D.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"