Giải bài tập 5.33 trang 112 SGK Toán 9 tập 1 - Kết nối tri thức

2024-09-14 18:15:34

Đề bài

Cho hình 5.43, trong đó BD là đường kính, \(\widehat {{\rm{AOB}}} = 40^\circ ;\widehat {\,{\rm{BOC}}} = 100^\circ \). Khi đó:

A. sđ \(\overset\frown{\text{DC}}=80{}^\circ \) và sđ \(\overset\frown{\text{AD}}=220{}^\circ \)

B. sđ \(\overset\frown{\text{DC}}=280{}^\circ \) và sđ \(\overset\frown{\text{AD}}=220{}^\circ \)

C. sđ \(\overset\frown{\text{DC}}=280{}^\circ \) và sđ \(\overset\frown{\text{AD}}=140{}^\circ \)

D. sđ \(\overset\frown{\text{DC}}=80{}^\circ \) và sđ \(\overset\frown{\text{AD}}=140{}^\circ \)

Phương pháp giải - Xem chi tiết

Dựa vào liên hệ giữa hai góc kề bù tính số đo góc \(\widehat {\,{\rm{DOC}}}\) và \(\widehat {\,{\rm{AOD}}}\). Từ đó suy ra số đo các cung DC và AD.

Lời giải chi tiết

Vì \(\widehat {\,{\rm{DOC}}}\) và \(\widehat {\,{\rm{BOC}}}\) là hai góc kề bù nên

\(\widehat {\,{\rm{DOC}}} + \widehat {\,{\rm{BOC}}} = 180^\circ \)

hay \(\widehat {\,{\rm{DOC}}} = 180^\circ  - \widehat {\,{\rm{BOC}}} = 180^\circ  - 100^\circ  = 80^\circ \).

Suy ra sđ \(\overset\frown{\text{DC}}=80{}^\circ \)

Vì \(\widehat {\,{\rm{AOD}}}\) và \(\widehat {\,{\rm{AOB}}}\) là hai góc kề bù nên

\(\widehat {\,{\rm{AOD}}} + \widehat {\,{\rm{AOB}}} = 180^\circ \)

hay \(\widehat {\,{\rm{AOD}}} = 180^\circ  - \widehat {\,{\rm{AOB}}} = 180^\circ  - 40^\circ  = 140^\circ \).

Suy ra sđ \(\overset\frown{\text{AD}}=140{}^\circ \)

Chọn D.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"